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a b s t r a c t

Discriminative clustering is an unsupervised learning framework which introduces the discriminative
learning rule of supervised classification into clustering. The underlying assumption is that a good parti-
tion (clustering) of the data should yield high discrimination, namely, the partitioned data can be easily
classified by some classification algorithms. In this paper, we propose three discriminative clustering ap-
proaches based on Extreme Learning Machine (ELM). The first algorithm iteratively trains weighted ELM
(W-ELM) classifier to graduallymaximize the data discrimination. The second and thirdmethods are both
built on Fisher’s Linear Discriminant Analysis (LDA); but one approach adopts alternative optimization,
while the other leverages kernel k-means. We show that the proposed algorithms can be easily imple-
mented, and yield competitive clustering accuracy on real world data sets compared to state-of-the-art
clustering methods.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the most fundamental unsupervised learning tasks
in machine learning and computational intelligence, clustering
has been widely studied and applied in various domains (Punj &
Stewart, 1983; Steinbach, Karypis, & Kumar, 2000; Xu & Wunsch,
2005). The goal of clustering is to find a partition of the data, such
that samples within the same cluster are similar, while samples
from different clusters are distinct (Jain & Dubes, 1988). Many
clustering algorithms have been proposed to fulfil this task, such as
the k-means algorithm (Hartigan & Wong, 1979), graph theoretic
clustering (Belkin & Niyogi, 2001; Ng, Jordan, & Weiss, 2001; Shi
& Malik, 2000) and information theoretic clustering (Gokcay &
Principe, 2002;Gomes, Krause, & Perona, 2010; Sugiyama, Yamada,
Kimura, & Hachiya, 2011).

Discriminative Clustering (DC) is an important type of clus-
tering approach, and is relatively new in the clustering research
field (Ding & Li, 2007; Huang, Zhang, Song, & Zheng, 2015; Niu,
Dai, Shang, & Sugiyama, 2013; Xu, Neufeld, Larson, & Schuurmans,
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2004; Ye, Zhao, & Wu, 2007; Zhao, Wang, & Zhang, 2008). Gener-
ally, DC aims to separate the training data into clusters with high
discrimination. In other words, if we take the clustering labels of
a good clustering of the data as the targets, then we can easily
learn a supervised classifier on this ‘‘labeled’’ data set with high
accuracy. Intuitively, the goal of DC is compatible with that of clas-
sical clustering, since high discrimination between different clus-
ters also implies that samples fromdifferent clusters are dissimilar,
while sampleswithin the same cluster have relatively high similar-
ity. This assumption inspires many novel clustering algorithms.

As one of the representative DC approaches, Maximum Margin
Clustering (MMC) (Xu et al., 2004) introduces the idea of margin
maximization in supervised learning into clustering. MMC tries to
find a partition of the data so that different clusters are separated
by large margins, and thus large margin based classifiers, e.g., sup-
port vector machines (SVM), can classify the clusters with high ac-
curacy. Though MMC has achieved encouraging results on many
clustering tasks (Xu et al., 2004), it has two main drawbacks: (1) it
is limited to binary clustering, and (2) it involves solving a Semi-
Definite Programming (SDP) which is computationally expensive.
Regarding the first problem, Xu and Schuurmans (2005) extended
MMC to multi-class clustering. With regards to the second issue,
Valizadegan and Jin (2007) proposed a generalizedMMCwhich re-
duces the number of parameters in the SDP formulation from n2 in
Xu and Schuurmans (2005) to n, thus significantly improves the
efficiency of MMC. In Zhang, Tsang, and Kwok (2007), an iterative
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support vector regression approach was introduced to scale MMC
to data sets with thousands of samples. In Zhao et al. (2008), a lin-
ear timeMMC algorithmwas proposed based on cutting-plane op-
timization.

Another important type of DC is the Linear Discriminant Anal-
ysis (LDA)-based clustering. In De la Torre and Kanade (2006), a
Discriminative Cluster Analysis (DCA) approach was proposed by
jointly performing dimension reduction and clustering. Ding and Li
(2007) combined LDA with k-means, yielding an efficient cluster-
ing algorithm which alternatively performs dimension reduction
using supervised LDA and k-means clustering in the low dimen-
sional space. Later, Ye et al. (2007) showed that the objective in
Ding and Li (2007) can be optimized without alternative optimiza-
tion, but solved by a single pass of kernel k-means.

There also exist many other types of DC algorithms, such
as maximum volume clustering (Niu et al., 2013), information
maximization-based clustering (Gomes et al., 2010), maximin
separation probability clustering (Huang et al., 2015). However,
few of these existing DC algorithms can simultaneously meet the
following three basic requirements for clustering: (1) efficiently
scales to large data sets; (2) naturally handles multi-cluster
problem; and (3) capable of discovering nonlinear data structures.

Extreme Learning Machine (ELM) is a state-of-the-art super-
vised learning algorithmproposed byHuang, Zhu, and Siew (2004).
ELM was originally proposed for classification and regression. It
has several salient features: efficient, accurate and can be imple-
mented easily (Butcher, Verstraeten, Schrauwen, Day, & Haycock,
2013; Huang, Huang, Song, & You, 2015; Huang, Zhou, Ding, &
Zhang, 2012; Liu, Gao, & Li, 2012), and has beenwidely used in var-
ious applications (Cao, Chen, & Fan, 2014, 2015; Cao & Xiong, 2014;
Shi, Cai, Zhu, Zhong, & Wang, 2013). Extending ELM for clustering
has been addressed in several existing works. One straightforward
approach is to perform clustering using any existing clustering al-
gorithms, e.g., k-means, in the embedding space obtained by ELM
(He, Jin, Du, Zhuang, & Shi, 2014). Though easy to be implemented,
these approaches sacrifice the flexibility of ELM because the out-
put weights of ELM are omitted, and it is not possible to perform
regularization in them. Thismay degrade the robustness of cluster-
ingwhen training data are perturbed by noise. Huang, Song, Gupta,
and Wu (2014) proposed to determine the output weight in unsu-
pervised ELM (US-ELM) via manifold regularization, and perform
clustering in the output space. The US-ELM algorithm can capture
the manifold structure in the data, and is shown to perform well
on data set with manifold property (Huang et al., 2014). Kasun,
Liu, Yang, Lin, and Huang (2015) proposed to project the data along
the output weight learned by ELM Auto Encoder, which is also an
unsupervised learning process. It has been shown that the output
weights learn the variance information of the data, and this embed-
ding process reduces the within-cluster variance and preserve the
between-cluster variance. Results suggest that this method works
well on cluster-alike data sets. Different from embedding-based
clustering, Zhang, Xia, Liu, and Lei (2013) introduced a clustering
algorithm by iteratively training ELM classifier. Since the unde-
sired imbalanced clustering problem often occurs in the iterative
training procedure, some heuristics have to be introduced to avoid
trivial solutions. Yang et al. (2014) proposed to find optimal data
partitions using multiple ELMs. However, their work is designed
for supervised learning and requires the ground truth of the data
during training.

In this paper, we investigate the problem of extending ELM
to discriminative clustering. The motivation is to take advan-
tage of ELM, and to design clustering algorithms which inherit
its salient advantages, such as high efficiency, easiness of imple-
mentation and capable of handling multi-class data set. The first
proposed algorithm was an iterative weighted ELM (ELMCIter ) ap-
proach similar to that proposed by Zhang et al. (2013). The dif-
ference is that we use the weighted ELM (W-ELM) (Zong, Huang,

& Chen, 2013) to avoid imbalance clustering in a more principled
way. The second and third methods are embedding-based meth-
ods, which take advantages of LDA. Different from Huang et al.
(2014) and Kasun et al. (2015), the proposed methods learn the
optimal embedding in a supervised manner, i.e., LDA, and there-
fore are expected to minimize the within-cluster distance and
between-cluster distance at the same time. The second approach
ELMCLDA was inspired by Ding and Li (2007) which performs LDA
and k-means alternatively. In their work (Ding & Li, 2007), LDA is
performed in the original space. In contrast, we run LDA in the out-
put space of ELM, which is a nonlinear mapping of the input space.
In this way, our approach is able to discover nonlinear structure in
training data. The third approach ELMCKM has the sameobjective as
our second approach, but it is solved via a kernel k-means with the
kernelmatrix calculated based on the centered hidden layer output
matrix of ELM. ELMCKM is built on the theoretical analysis given in
Ye et al. (2007). However, the proposedmethod can efficiently deal
with nonlinear clustering tasks, while the kernel-based clustering
algorithm proposed in Ye et al. (2007) needs to solve a SDP which
is computationally expensive. Compared to existingDC algorithms,
the proposed methods simultaneously meet all the three basic re-
quirements for clustering. We demonstrate the advantages of the
proposed algorithmson awide range of realworld clustering tasks.

2. Extreme learning machine

Consider a supervised classification problem where we have a
training set with N samples, {X, Y } = {xi, yi}Ni=1. Here xi ∈ Rd,
yi = [yi1, . . . , yim]

⊤ is a m-dimensional binary vector such that
yij = 1 if xi ∈ Cj, and yij = 0 otherwise. Here d and m are the
dimensions of input and output respectively.

Traditional supervised ELM learns a nonlinear classifier from
the training data set in two stages (Huang et al., 2015; Huang,
Wang, & Lan, 2011; Huang et al., 2004). The first stage is to map
the training data into a feature space using randomly generated
nonlinear activation functions. Typical activation functions include
the sigmoid function and Gaussian function, as given below.

(1) Sigmoid function

g(x; θ) =
1

1 + exp(−(aTx + b))
; (1)

(2) Gaussian function

g(x; θ) = exp(−b∥x − a∥); (2)

where θ = {a, b} are the parameters of the mapping function
and ∥ · ∥ denotes the Euclidean norm.

A notable feature of ELMs is that the parameters of the hidden
mapping functions can be randomly generated according to any
continuous probability distribution, e.g., the uniform distribution
on (−1, 1). This makes ELMs distinct from the traditional
feedforward neural networks and SVMs. The only free parameters
that need to be optimized in the training process are the output
weights between the hidden neurons and the output nodes. As a
consequence, training ELMs is equivalent to solving a regularized
least squares problem which is considerately more efficient than
training SVMs or learning with backpropagation (BP) (Rumelhart,
Hinton, & Williams, 1986).

In the first stage, a number of hidden neurons which map the
data from the input space into a l-dimensional feature space (l is the
number of hidden neurons) are randomly generated.We denote by
h(xi) ∈ R1×l the output vector of the hidden layer with respect to
xi, and β ∈ Rl×m the output weights that connect the hidden layer
with the output layer. Then, the outputs of the network are given
by

f (xi) = h(xi)β, i = 1, . . . ,N. (3)
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