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a b s t r a c t

This paper investigates whether the output space of a multi-layer cellular neural network can be realized
via a single layer cellular neural network in the sense of the existence of finite-to-onemap fromone output
space to the other. Whenever such realization exists, the phenomena exhibited in the output space of the
revealed single layer cellular neural network is at most a constant multiple of the phenomena exhibited
in the output space of the original multi-layer cellular neural network. Meanwhile, the computation
complexity of a single layer system is much less than the complexity of a multi-layer system. Namely,
one can trade the precision of the results for the execution time. We remark that a routine extension of
the proposed methodology in this paper can be applied to the substitution of hidden spaces although the
detailed illustration is omitted.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular neural networks (CNNs), introduced by Chua and Yang
(1988a, 1988b), have been one of the most investigated paradigms
in neural information processing (Chua, 1998). CNNsmust be com-
pletely stable in a wide range of applications (e.g., pattern recogni-
tion), i.e., each trajectory should converge toward some stationary
state. The study of stationary solutions is thus important. More-
over, the investigation ofmosaic solutions is essential due to the im-
portance of learning algorithms and the training process. Roughly
speaking, a learning algorithm is more efficient if there are more
abundant output patterns for a given CNN.

Coupled systems based on CNNs, namely multi-layer cellular
neural networks (MCNNs), have received considerable attention
and have been successfully applied to many areas such as
signal propagation between neurons, image processing, pattern
recognition, information technology, CMOS realization and VLSI
implementation (Arena, Baglio, Fortuna, & Manganaro, 1998; Ban
& Chang, 2013; Carmona, Jimenez-Garrido, Dominguez-Castro,
Espejo, & Rodriguez-Vazquez, 2002; Chua & Roska, 2002; Chua &
Shi, 1991; Chua & Yang, 1988a; Crounse & Chua, 1995; Crounse,
Roska, & Chua, 1993; Li, 2009; Murugesh, 2010; Peng, Zhang,
& Liao, 2009; Xavier-de Souza, Yalcin, Suykens, & Vandewalle,
2004; Yang, Nishio, & Ushida, 2001, 2002). The development
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of CNNs has been inspired by the visual systems of mammals
(Fukushima, 2013a, 2013b). The sufficient conditions for the
complete stability of MCNNs can be found in Török and Roska
(2004). Just as with CNNs, the study of mosaic solutions is also
important and interesting. Recently, Ban and Chang (2009) showed
that for MCNNs, more layers infer that models are capable of more
phenomena.

A multi-layer cellular neural network is represented as
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for some integer N ≥ 2, i ∈ Z, and t ≥ 0. The inputs for the
neurons in the kth layer are the outputs of the (k−1)th layer in the
proposed model (1) for 2 ≤ k ≤ N . Fig. 1 shows the connections
of a three-layer CNNwith the nearest neighborhood. The so-called
neighborhoodN is a finite subset of integers Z; the output function

f (x) =
1
2
(|x + 1| − |x − 1|) (2)
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Fig. 1. Three-layer cellular neural networks with nearest neighborhood.

is a piecewise linear map.A = [A1, . . . , AN ] andB = [B2, . . . , BN ]

are the feedback and controlling templates, respectively, where
Aj = [a(j)

k ]k∈N , Bl = [b(l)
k ]k∈N for 1 ≤ j ≤ N, 2 ≤ l ≤ N; z =

[z(1), . . . , z(N)
] is the threshold. The template T of (1) consists of

the feedback and controlling templates and the threshold, namely
T = [A,B, z]. Note that (1) is a standard CNN if N = 1. This type
of case is referred to as a single layer CNN.

A mosaic solution x is a solution of (1) which satisfies |xi| > 1
and its corresponding pattern y = (yi) = (f (xi)) is called a mosaic
output pattern. Since the output function (2) is piecewise linear
with f (x) = 1 (resp. −1) if x ≥ 1 (resp. x ≤ −1), the output of a
mosaic solution x = (xi)i∈Z must be an element inΣ = {−1, +1}Z,
which is why we call them patterns.

Given an N-layer MCNNwith N ≥ 2, we denote Y(N) as the out-
put solution space corresponding to a given input (ui)i∈Z; namely,

Y(N)
= {(yi)i∈Z : (yi)i∈Z is a output solution

for some input (ui)i∈Z} .

A natural question arises: when Y (N) behaves like a single layer
CNN, can we find some map which links both systems? Such a
problem is called a realization problem since once this phenomenon
has occurred, the given MCNN is realized by a single layer CNN
system. From a mathematical point of view, the advantage of
realizing a MCNN by a CNN is that one can classify MCNNs in
terms of CNNs. If it indeed behaves like a single layer CNN, then it
is easier to control. From an engineering perspective meanwhile,
a realizable MCNN helps us to reduce the computation of such
machines. In other words, this type of CNN is indeed a shallow
architecture neural network model (cf. Bengio, 2009, Bengio &
LeCun, 2007, Chang, 2015, Fukushima, 2013b, Hinton, Osindero, &
Teh, 2006, Utgoff & Stracuzzi, 2002). Let C(Σ, Σ) denote the set
of continuous maps from Σ to Σ . A map τ ∈ C(Σ, Σ) is called
a factor (resp. an embedding) if it is onto (resp. one-to-one). τ is
called a conjugacy if it is both a factor and embedding. A realization
problem can be achieved by raising the following problem.

Problem 1. Let Y(N) be the output solution space of a MCNN (1)
with N ≥ 2.

(1) Does a pair (Y, π) ∈ Σ ×C(Σ, Σ) exist, where Y is themosaic
solution space of a single layer CNN and π : Y → Y(N) is a
factor from Y to Y(N)?

(2) Does π preserve the topological entropy, i.e., htop(Y) = htop
(π(Y))?

(3) When does the factor π become an embedding, i.e., π is one-
to-one?

Note that Y and Y(N) are conjugate once (1) and (3) are satisfied.

It is worth pointing out that if π exists in the Problem 1–(1),
then it links Y(N) with some single layer CNN. Therefore, the output
space Y(N) is controlled by the factors π and Y. If Problem 1-(2)
holds, then the complexity of both Y(N) and Y are the same, and it
is important for the application of the learning algorithm. Finally,
Y(N) and Y are topologically the same if one ensures the factor π is

also an embedding (Problem 1-(3)), and one simply replaces Y(N)

with Y in this case.
The aim of this paper is to study the above problem. Theo-

rem 4.2 provides a natural and intrinsic characterization of Prob-
lem 1-(1) and 1-(2) by using the hidden Markov technique of
symbolic dynamics. However, Problem 1-(3) is still unknown and
is beyond the scope of the current study.

We also emphasize that one may raise the same problems on
Y(i) and Y(j) for 1 ≤ i, j ≤ N . More precisely, does a factor π be-
tween Y(i) and Y(j) exist for some 1 ≤ i, j ≤ n which preserves
topological entropy? When does the factor π become an embed-
ding? Some partial results are provided by Chang (2015). We em-
phasize that such a problem has to do with one given MCNN, and
discuss the relationship between the output spaces of certain lay-
ers in such MCNNs. On the contrary, this study focuses on the re-
lationship between a MCNN with other single layer CNNs. These
two problems are different due to the fact that if Y(i) and Y(j) are
extracted from the same MCNN, they inherit the same system in-
formation, making the discussion easier.

The rest of this paper is organized as follows. Section 2 considers
the learning problem of two-layer cellular neural networks in
pattern formation. Section 3 focuses on the realization problem
of two-layer cellular neural networks, and the necessary and
sufficient conditions for the existence of an entropy-preserving
map between the output spaces of one and two-layer cellular
neural networks. Following the discussion in Sections 2 and 3,
Section 4 extends the results to general multi-layer cellular neural
networks. Some discussion and suggestions for possible future
research are given in Section 5 as a conclusion to the presentwork.

2. Learning problem of two-layer cellular neural networks

Learning problems (also called inverse problems) are some of
the most investigated topics in a variety of disciplines. From a
mathematical point of view, determining whether a given collec-
tion of output patterns can be seen through a CNN/MCNN is es-
sential for the study of learning problems. This section reveals the
necessary and sufficient conditions for the capability of exhibiting
the output patterns of single layer cellular neural networks. The
discussion can be applied to the elucidation of general cases, has
addressed in Section 4.

A two-layer cellular neural network is seen as
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for some d ∈ N, and u(2)
i = y(1)

i for i ∈ Z; N represents the set of
positive integers and Z denotes the set of integers. The prototype
of (3) is

dxi
dt

= −xi +

|k|≤d

akyi+k +


|ℓ|≤d

bℓui+ℓ + z. (4)

Here A = [−ad, . . . , ad], B = [−bd, . . . , bd] are called feedback
and controlling templates, respectively; z is known as the threshold,
and yi = f (xi) =

1
2 (|xi + 1| − |xi − 1|) is the output of xi. The

quantity xi represents the state of the cell at i for i ∈ Z. The output
of a stationary solution x̄ = (x̄i)i∈Z is called an output pattern. A
mosaic solution x̄ satisfies |x̄i| > 1 and its corresponding pattern ȳ
is called amosaic output pattern. Considering themosaic solution x̄,
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