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a b s t r a c t

This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural
networkswith partly unknown transition probabilities viamultiple integral approach. The array of neural
networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of
this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly
unknown transition probabilities such that the coupled neural network is synchronizedwithmixed time-
delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities.
Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly
coupled neural networks with partly unknown transition probabilities. By making use of Kronecker
product and some useful integral inequalities, a novel Lyapunov–Krasovskii functional was designed for
handling the coupled neural network with mixed delay and then impulsive synchronization criteria are
solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the
effectiveness and advantages of the theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A complex dynamical network consists of a large set of nodes
sprouting according to their respective dynamical equations. Be-
haviors of these nodes are usually coupled according to the
network topology. In real world applications, a great number of
practical systems can be represented by models of complex net-
works, such as internet, worldwideweb, foodwebs, electric power
grids, cellular andmetabolic networks, scientific citation networks,
social networks, protein interaction networks, and so on. So far,
complex dynamical network has been one of the most popular
topics in the areas of stabilization, synchronization, robustness,
diffusion, passivity, dissipativity, bifurcation and so on. Recently,
much research interest in the theory and applications of complex
networks has been aroused in many fields of science and tech-
nology. Delayed neural networks, as special complex networks,
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have also been intensively studied by Arik (2004, 2005), Faydasi-
cok and Arik (2013), Liu, Wang, and Liu (2008b) and Lu, Ho, and
Liu (2007). For instance, Yuan, Luo, Jiang, Wang, and Fang (2007)
proposed the complex dynamical network model, which is al-
ways uniformly asymptotically stable about its equilibrium. More-
over, stability analysis and decentralized control problems are
addressed for linear and sector-nonlinear complex dynamical net-
works in Duan, Wang, Chen, and Huang (2008).

Synchronization is a method to synchronize two identical
chaotic systems with different initial conditions. It is widely used
in the area of secure communications, image processing, harmonic
oscillation generation, language emergence development, biologi-
cal systems, chemical reactions, structure engineering, information
processing, power converts, by taking into account of their compli-
cated dynamical behaviors such as complex dynamical networks.
Based on the applications of synchronization with complex dy-
namical networks, synchronization problem for complex dynam-
ical networks with switching topology from a switched system
point of view is considered in Zhao, Hill, and Liu (2009). Further, the
synchronization of complex dynamical networks with system de-
lay and multiple coupling delays via impulsive distributed control
was studied in Guan, Liu, Feng, andWang (2010), by the concept of
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control topology introduced to describe thewhole controller struc-
ture, which consists of some directed connections between nodes.
Zhang, Xu, Chu, and Lu (2010), considered the problem of robust
global exponential synchronization for a class of complex networks
with time-varying delay couplings and each node in the network
is composed of a class of delayed neural networks described by a
nonlinear delay differential equation of neutral-type. Meanwhile
Li, Zhang, Hu, and Nie (2011) considered the problem of sampled-
data synchronization control for a class of general complex net-
works with time-varying coupling delays with a rather general
sector like nonlinear function is used to describe the non-
linearities existing in the network. Recently, pth moment ex-
ponential synchronization of coupled memristor-based neural
networks with both time-varying discrete delays and unbounded
distributed delays under time-delayed impulsive control was in-
vestigated in Yang, Cao, and Qiu (2015), by using the Lyapunov
functional method and some inequality techniques. The cluster
synchronization was studied for array of hybrid coupled neural
networks in Cao and Li (2009). Moreover, Rakkiyappan and Sak-
thivel (2014) studied the problem of cluster synchronization for
Lur’e type Takagi–Sugeno fuzzy complex networks with proba-
bilistic time-varying delay using Kronecker product with convex
combination technique.

A set of linear systems with transitions between models deter-
mined by a Markov chain in a finite set mode is known as Marko-
vian jump system. The neural networks may have been a finite
modes and the modes may switch from one to another at differ-
ent times and it is shown that the switching between different
neural network models can be governed by a Markov chain. Ad-
ditionally, Markov chains have also been widely used as a generic
framework formodeling gene networks. So due to extensive appli-
cations of such systems inmanufacturing systems, power systems,
communication systems and network-based control systems, etc.
Recently, many works have been reported about Markovian jump
systems. For instance Karimi (2012) studied the problem of a
sliding-mode approach for exponential H∞ synchronization prob-
lem for a class of master–slave time-delay systems with both
discrete and distributed time-delays, norm bounded nonlinear
uncertainties and Markovian switching parameters. Recently, Yi,
Wang, Xiao, and Huang (2013), studied the synchronization prob-
lem of complex dynamical networks with stochastic delay which
switches stochastically among several forms of time-varying de-
lays with both the discrete and distributed delays as well as the
Markovian jump parameters. In Cui, Fang, and Zhang (2013), stabi-
lization and synchronization control for Markovian jumping neu-
ral networks with mode-dependent mixed time delays subject to
quantization and packet dropout was considered. It is significant
to point out that all of the above mentioned references assume
that the information on transition probabilities in the jumping pro-
cess is completely known. However, in most cases, the transition
probabilities of Markovian jump systems are not exactly known.
Hence, it is of great importance to investigate the Markovian
jump system with partly unknown transition probabilities. Ma,
Xu, and Zou (2011), addressed the problems of stability and syn-
chronization for a class of Markovian jump neural networks with
partly unknown transition probabilities. Recently, Zhang, Fang,
Miao, Chen, and Zhu (2013), studied the exponential synchroniza-
tion problem of Markovian jump genetic oscillators with partly
unknown transition probabilities. In addition, Chandrasekar,
Rakkiyappan, Rihan, and Lakshmanan (2014), considered the prob-
lem of exponential synchronization of Markovian jumping neu-
ral networks with partly unknown transition probabilities via
stochastic sampled-data control. So studies on synchronization
and the performance for Markovian jump systems with partly un-
known transition probabilities are of both theoretical and practical
importance.

It is well known that impulsive effects arewidespread phenom-
ena in many systems such as computer networks, automatic con-
trol systems, signal processing systems and telecommunications.
Therefore, the study of complex networks with impulsive effects
is important for understanding the dynamical behaviors of real
networks. In recent years, synchronization of impulsive complex
dynamical networks has been investigated by many researchers.
For instance, Li and Rakkiyappan (2013) and Li and Fu (2011),
studied the Synchronization of chaotic delayed neural networks
with impulsive controller. Recently, Zheng (2015), investigated
the problem of impulsive complex projective synchronization for
drive-response complex-variable dynamical networks with com-
plex coupling, and the dynamical networks with and without de-
lay complex-variable system nodes. To the best of our knowledge,
there are few problems that deal with the impulsive synchro-
nization of coupled neural networks, which motivates our present
study.

Motivated by the above existing literature, the main contribu-
tions of this paper are as follows:

1. The general model of impulsive synchronization for Marko-
vian jumping randomly coupled neural networks with partly un-
known transition probabilities is introduced. By designing a novel
Lyapunov functional, an impulsive synchronization criterion is es-
tablished in terms of LMIs which can be solved efficiently by us-
ing the optimization algorithms. In addition, the control objective
is that the trajectories of the slave system by designing suitable
control schemes track the trajectories of the master system with
impulsive effects have been utilized to strengthen this paper.

2. As mentioned in the previous works (Yang, Cao, & Lu, 2012a,
2012b, 2013), the authors have discussed the synchronization
for coupled neural networks by using the double integral terms.
But in our paper, the LKF is constructed as in W0(xt , t, r(t))
and Wl(xt , t, r(t)) to handle the multiple integral approach as
compared with Yang et al. (2012a, 2012b, 2013) which has
been used to reduce the computational burden in the theoretical
aspects. Moreover, in the recent existing literature, so far, little
consideration has been paid by assuming the partly unknown
transition probabilities to analyze the impulsive synchronization
of coupled neural networks which motivates the present study.

3. Finally, the effectiveness of the proposed methodology are
confirmed on extensively tested examples.

The rest of this paper is organized as follows. In Section 2, the
controlled synchronization problem is described and some prelim-
inaries are introduced. In Section 3, the impulsive synchronization
problem with partly unknown transition probabilities is studied
and some sufficient conditions are developed. In Section 4, illustra-
tive examples are provided to demonstrate the effectiveness of the
proposed criteria and finally, conclusions are drawn in Section 5.
Notations: In the sequel, if not explicitly stated, matrices are
assumed to have compatible dimensions. I denotes the identity
matrix with appropriate dimension. The Euclidean norm in Rn is
denoted as ∥ · ∥, accordingly, for vector x ∈ Rn, ∥x∥ = xT x, where
T denotes transposition. A = (aij)m×m denotes a matrix of m × m-
dimension. A > 0 or A < 0 denotes that the matrix is symmetric
and positive or negative definite matrix. λmax(A) is the maximum
eigenvalue of symmetricmatrixA.E{.} stands for themathematical
expectation.

2. Problem description and preliminaries

Let {r(t), t ≥ 0} be a right-continuous Markov chain on
the probability space taking values in a finite state space S =

{1, 2, . . . , Ñ} with generator Π = (πij)Ñ×Ñ given by

P{r(t + 1t) = j|r(t) = i} =


πij1t + O(1t), if i ≠ j,
1 + πij1t + O(1t), if i = j,
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