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a b s t r a c t

In this paper, based on the matrix measure method and the Halanay inequality, global exponential
stability problem is investigated for the complex-valued recurrent neural networks with time-varying
delays. Without constructing any Lyapunov functions, several sufficient criteria are obtained to ascertain
the global exponential stability of the addressed complex-valued neural networks under different
activation functions. Here, the activation functions are no longer assumed to be derivativewhich is always
demanded in relating references. In addition, the obtained results are easy to be verified and implemented
in practice. Finally, two examples are given to illustrate the effectiveness of the obtained results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few years, the dynamic behaviors such as stabil-
ity and stabilization of recurrent neural networks (see Ahn, 2014;
Ahn, Shi, & Wu, in press) have been widely studied due to their
extensive applications in classification of pattern recognition, sig-
nal processing, image processing, engineering optimization and as-
sociative memory, and other areas, see Chen and Wang (2005),
Cao and Wang (2014), Cao, Yuan, and Li (2006), Hu and Wang
(2002), Liao, Wang, and Zeng (2005), Wang, Zhang, and Yu (2009)
and Zhang, Wang, and Liu (2008) and the references therein. In a
large amount of applications, complex signals often occur and the
complex-valued recurrent neural networks are preferable. There-
fore, there have been increasing research interests in the dynam-
ical behaviors of complex-valued recurrent neural networks, for
example, see Goh and Mandic (2004, 2007), Hirose (2006),
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Jankowski, Lozowski, and Zurada (1996a), Lee (2001), Li, Liao, and
Yu (2002) and Zhang, Li, and Huang (2014).

Compared with the real-valued neural networks, the states,
connection weights and activation functions of the complex-
valued neural networks are all complex-valued. Therefore, there
are many differences between the real-valued neural networks
and the complex-valued ones. In fact, the complex-valued neural
networks have much more complicated properties than the real-
valued ones in a lot of aspects and hence make it possible to solve
many problems that cannot be solved with their real-valued coun-
terparts. For example, both the XOR problem and the detection
of symmetry problem cannot be solved with a single real-valued
neuron, however, they can be solved with a single complex-valued
neuron with the orthogonal decision boundaries (Jankowski, Lo-
zowski, & Zurada, 1996b). Therefore, it is very important to
investigate the dynamical behaviors of the complex-valued neu-
ral networks, especially the stability of the complex-valued neu-
ral networks. In Zou and Song (2013), the complete stability and
boundedness of the complex-valued neural networks with time
delay have been studied in order to obtain some conditions to guar-
antee the complete stability of the considered neural networks by
using the method of local inhibition and energy minimization. In
Zhou and Zurada (2009), a class of discrete-time recurrent neu-
ral networks with complex-valued linear threshold neurons has
been discussed, and some conditions have been derived to ascer-
tain the global attractivity, boundedness and complete stability of
such networks. In Bohner, Rao, and Sanyal (2011), the activation
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dynamics of the complex-valued neural network on a general time
scale have been investigated, and several sufficient criteria are de-
rived to guarantee the existence of a unique equilibrium solution.
Moreover, the global exponential stability of the considered net-
works has been also discussed. In Rao andMurthy (2008), a class of
generalized discrete-time complex-valued neural network model
has been studied, and a sufficient condition for the global expo-
nential stability has been presented; besides that, the existence of
the unique equilibrium pattern has also been discussed. For more
works on the stability analysis and dissipativity analysis, we re-
fer to the works in Li, Rakkiyappan, and Velmurugan (2015) and
Rakkiyappan, Velmurugan, and Li (2015).

There are various approaches for analyzing the neural net-
works, such as the Lyapunov function method, the energy func-
tion method, the synthesis method and so on (Liu, Fang, & Liu,
2009; Michel, Farrell, & Sun, 1990). In Hu and Wang (2012), based
on constructing appropriate Lyapunov function and the M-matrix
properties, several sufficient conditions have been presented to
ascertain the existence and uniqueness of the equilibrium point,
and the global exponential stability and the global asymptotic
stability for the complex-valued recurrent neural networks. In
Liu et al. (2009), a discrete-time complex-valued neural network
model has been studied by using the synthesis method, and a sta-
ble criterion about network parameters has been derived. In Kuroe,
Yoshid, and Mori (2003), the properties of activation functions
have been discussed so as to find complex functions with those
properties by using the energy function method. However, to the
best knowledge of the authors, there are few results on the expo-
nential stability of the complex-valued recurrent neural networks
with time-varying delays by using the matrix measure method
(Fang & Sun, 2013, 2014), which forms our first motivation to de-
velop the presented research.

Generally speaking, time delay is likely to be present because of
the finite switching speed of amplifiers and occur in signal trans-
missions in the electronic implementation of neural networks,
which may influence the dynamical behaviors, since it can bring
oscillation, bifurcation and instability to the neural networks, see
Ma, Lu, Wang, and Feng (2008), He, Li, Huang, and Li (2013) and
Khajanchi and Banerjee (2014) for examples. Hence, it is neces-
sary to study the dynamical behaviors of the delayed neural net-
works. Over the past few decades, a great deal of work associ-
ated with this area has been done by researchers. In Chen and
Song (2013), the global stability of complex-valued neural net-
works with both leakage time delay and discrete time delay on
time scales has been studied by constructing appropriate Lyapunov
function, and several sufficient conditions have been obtained to
ascertain the global stability of the addressed neural networks. In
Hu andWang (2012), the delayed complex-valued recurrent neural
networks with two classes of complex-valued activation functions
have been investigated, and several sufficient criteria have been
obtained to ascertain the existence of the unique equilibrium, the
global asymptotic stability and the global exponential stability of
the network.

Inspired by the above discussions, a novel approach is proposed
for the global exponential stability of the complex-valued recur-
rent neural networks with time-varying delays. Under two classes
of activation functions, several sufficient conditions are presented
to ascertain the global exponential stability of the addressed neu-
ral networks by using thematrix measure method and Halanay in-
equality. The remaining part of the paper is organized as follows.
In Section 2, the model of the complex-valued recurrent neural
networks with time-varying delays is presented, and some pre-
liminaries are briefly outlined. In Section 3, a novel approach is
proposed without constructing any Lyapunov functions, sev-
eral criteria are obtained to ascertain the global stability of the
complex-valued neural networks by utilizing the matrix measure

method and the Halanay inequality. In Section 4, two numerical
examples are given to show the effectiveness of the acquired con-
ditions. Finally, conclusions are drawn in Section 5.
Notations: The notation used throughout this paper is fairly
standard. Cn, Cm×n and Rm×n denote the set of n-dimensional
complex vectors,m×n complex matrices andm×n real matrices,
respectively. Let i be the imaginary unit, i.e. i =

√
−1. The

superscript ‘T ’ represents the matrix transposition. X ≥ Y
(respectively, X > Y ) means that X − Y is positive semi-definite
(respectively, positive definite). PR and P I denote, respectively, the
real and the imaginary parts ofmatrix P ∈ Cm×n. C([t0−τ , t0], Rn)
represents the Banach space of continuous vector-valued functions
mapping the internal [t0 − τ , t0] into Rn with the topology of
uniform convergence. For ϕ ∈ C([t0 − τ , t0], Rn), define its norm
as ∥ϕ∥p = supt0−τ≤s≤t0 ∥ϕ(s)∥p, where ∥ϕ(s)∥p means the p-norm
of ϕ(s) ∈ Rn.

2. Problem formulation and some preliminaries

Consider the complex-valued recurrent neural networks with
time-varying delays described by the following nonlinear delay
differential equations:

u̇(t) = −Cu(t) + Af (u(t)) + Bg(u(t − τ(t))) + L, t ≥ t0 (1)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Cn is the state vector of
the neural networks with n neurons at time t, C = diag{c1, c2,
. . . , cn} ∈ Rn×n with ck > 0 (k = 1, 2, . . . , n) is the self-
feedback connection weight matrix, A = (akj)n×n ∈ Cn×n and
B = (bkj)n×n ∈ Cn×n are, respectively, the connection weight
matrix and the delayed connection weight matrix. L = (l1, l2,
. . . , ln)T ∈ Cn is the external input vector. f (u(t)) = (f1(u1(t)),
f2(u2(t)), . . . , fn(un(t)))T : Cn

→ Cn and g(u(t − τ(t))) =

(g1(u1(t − τ(t))), g2(u2(t − τ(t))), . . . , gn (un(t − τ(t))))T :

Cn
→ Cn denote, respectively, the vector-valued activation func-

tions without and with time delays, in which τ(t) is the transmis-
sion delay satisfying 0 ≤ τ(t) ≤ τ (τ > 0), and the nonlinear
activation functions are assumed to satisfy the conditions given be-
low:

Assumption 1. Let ν = ν1 + iν2 with ν1, ν2 ∈ R. fk(ν) and gk(ν)
can be expressed by their real and imaginary parts with

fk(ν) = f Rk (ν1) + if Ik (ν2), gk(ν) = gR
k (ν1) + ig I

k(ν2)

where k = 1, 2, . . . , n, and f Rk (·), f Ik (·), g
R
k (·), g I

k(·) : R → R
satisfying

|f Rk (ν1) − f Rk (ν1)| ≤ rk|ν1 − ν1|,

|f Ik (ν2) − f Ik (ν2)| ≤ sk|ν2 − ν2|;

|gR
k (ν1) − gR

k (ν1)| ≤ mk|ν1 − ν1|,

|g I
k(ν2) − g I

k(ν2)| ≤ qk|ν2 − ν2|;

in which rk, sk,mk and qk are known constants, and ν1, ν2, ν1, ν2
are any numbers in R.

With the above Assumption, if we denote u(t) = x(t) + iy(t)
with x(t), y(t) ∈ Rn, then the complex-valued recurrent neural
network (1) can be rewritten as follows:

ẋ(t) = −Cx(t) + ARf R(x(t)) − AI f I(y(t))
+ BRgR(x(t − τ(t))) − BIg I(y(t − τ(t))) + LR,

ẏ(t) = −Cy(t) + AI f R(x(t)) + ARf I(y(t))
+ BIgR(x(t − τ(t))) + BRg I(y(t − τ(t))) + LI

(2)

or in a more compact form

α̇(t) = −C1α(t) + A1f1(α(t)) + A2f2(α(t))
+ B1g1(α(t − τ(t))) + B2g2(α(t − τ(t))) + ζ , (3)
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