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a b s t r a c t

Although numerous models describe the individual neural mechanisms that may be involved in the
perception of visual motion, few of them have been constructed to take arbitrary stimuli and map them
to amotion percept. Here, we propose an integrated dynamical motionmodel (IDM), which is sufficiently
general to handle diverse moving stimuli, yet sufficiently precise to account for a wide-ranging set of
empirical observations made on a family of random dot kinematograms. In particular, we constructed
models of the cortical areas involved in motion detection, motion integration and perceptual decision.
We analyzed their parameters through dynamical simulations and numerical continuation to constrain
their proper ranges. Then, empirical data from a family of random dot kinematograms experiments
with systematically varying direction distribution, presentation duration and stimulus size, were used
to evaluate our model and estimate corresponding model parameters. The resulting model provides an
excellent account of a demanding set of parametrically varied behavioral effects on motion perception,
providing both quantitative and qualitative elements of evaluation.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Although our understanding of the underlying neural mech-
anisms of motion perception is incomplete, a range of motion
processing models have been proposed to account for various
properties of visual motion perception. Among those models, per-
ceptual models provide a high-level characterization of stimuli
and perception, and neural models suggest biologically plausible
mechanisms to process motion information. Of course, percep-
tual models often propose possible neural mechanisms, and neural
model properties often show direct connections to known percep-
tual phenomena. Yet, the links between the two levels of analysis
can be sketchy: Sometimes, the connections between the neural
components are not well understood; sometimes studying the re-
sulting complex systems requires the application of a wide range
of analytic procedures and significant computational power.

With increasing precision of experimental measurements and
computational power for simulations, it has become possible
to design and implement visual motion models encompassing
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both neurophysiology and psychophysics, further explicating the
links between perception and its neural substrate. In doing so, a
successful visual motion processing model will incorporate and
implement various neural components associated with different
neural populations at multiple levels of visual motion processing,
including components for motion detection, motion integration,
perception, and decision.

In the literature, neural motion models typically consider two-
stages of motion processing where a local motion detector typifies
processing in primate cortical area V1 (Adelson & Bergen, 1985;
van Santen & Sperling, 1984) and feeds motion information to a
large scale integrator associated with area MT (Heeger, Simoncelli,
& Movshon, 1996; Rust, Mante, Simoncelli, & Movshon, 2006;
Simoncelli & Heeger, 1998)

There have been a number of attempts to extend the tra-
ditional two-stage model. The models of Chey, Grossberg, and
Mingolla (1997, 1998) include variants to account for motion
detection and motion integration, yet provide only qualitative
comparison of model predictions to experimental results. Simi-
lar models have been proposed to investigate the role of feed-
back between cortical areas V1 and MT (Bayerl & Neumann,
2004), to include form–motion interactions (Bayerl & Neumann,
2007; Beck & Neumann, 2010; Berzhanskaya, Grossberg, & Min-
golla, 2007), to further study the dynamics of motion integration
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(Tlapale, Masson, & Kornprobst, 2010), or to consider rotations and
expansions (Raudies, Mingolla, & Neumann, 2011). Those mod-
els extend the traditional two-stage motion models (Heeger et al.,
1996; Rust et al., 2006; Simoncelli & Heeger, 1998), effectively
solving the motion aperture problem through non-linear normal-
ization, and include various initial motion detection stages based
on specific neural computations (Chey et al., 1997, 1998), phe-
nomenological models (Bayerl & Neumann, 2004), or motion en-
ergy models (Tlapale et al., 2010).

Bayesianmodels have been used tomodelmotion perception at
a higher level (Weiss & Adelson, 1998; Weiss, Simoncelli, & Adel-
son, 2002) or eye movements (Bogadhi, Montagnini, Mamassian,
Perrinet, &Masson, 2011;Montagnini,Mamassian, Perrinet, Castet,
& Masson, 2007). Typically those models assume probabilistic in-
puts and outputs, with various levels of abstraction, such as segre-
gation between 1D and 2D components (Montagnini et al., 2007),
and define some quantitative value to be maximized. Although
general neural implementation strategies for Bayesian mecha-
nisms have been proposed (Rao, 2004), as is the case for other
optimization methods such as variational approaches (Viéville,
Chemla, & Kornprobst, 2007), the link to the effective neural com-
putations is often not well specified. Indeed the focus and power of
those approaches lie in the high level description of the task per-
formedby theneural system,with respect to its a priori knowledge.

Physiologists have applied standardmodels of decision-making
to random dot motion and other stimuli. Perceptual decisions in
two-alternative forced choice are represented in drift diffusion
models in which positive or negative evidence accumulate until a
threshold is reached (Ratcliff, 1978; Stone, 1960). More recently,
Wang (2002) constructed a spiking neural network accounting for
a range of perceptual decision making experiments in random
dot motion, and later provided a neural field approximation
of their model (Wong, Huk, Shadlen, & Wang, 2007; Wong &
Wang, 2006), while Machens, Romo, and Brody (2005) proposed a
model for two interval forced choice decision paradigms. To make
computational and mathematical analysis tractable, most of those
approaches assume static or minimum representations where
the input typically represents two subpopulations of MT neurons
corresponding to the two choices in a forced choice paradigm,
with an average activity given by a linear function of the motion
coherence level in the stimulus (Mazurek, Roitman, Ditterich, &
Shadlen, 2003; Wong et al., 2007; Wong &Wang, 2006).

Finally, the influence of internal and external noise on percep-
tion is largely ignored in multi-scale models. Yet, noise is an im-
portant component of both the stimuli and the processing at every
level of the visual system. In themotiondomain, the classic random
dot kinematograms are defined by the large amount of (external)
noise they contain. Manipulating stimulus noise is also a particu-
larly useful tool to analyze a system, allowing researchers to distin-
guish between several types of internal noise (Lu & Dosher, 1999,
2008) and to investigate the influence of top-down signals (Lu &
Dosher, 1998).

We propose an integrated dynamical motion (IDM) model of
motion perception that incorporates biologically plausible mo-
tion detection and motion integration mechanisms, as well as a
decision mechanism to account for reaction times in perceiving
motion from randomdot kinematograms. Ourmodel includes tem-
poral dynamics that allow us to consider the systematic stimu-
lus variations and corresponding empirical results such as those
described in Watamaniuk and Sekuler (1992) and Watamaniuk,
Sekuler, and Williams (1989). Such parametric variations, includ-
ing systematic changes of random dot distribution, presentation
duration and stimulus size, remain uncommon in research on mo-
tion perception, but provide an empirically grounded test bed for
models of motion perception.

In Section 2 we detail the design of the multi-scale model of
motion perception based on the known architecture of the visual

system.We alsomake use of dynamical simulations and numerical
continuations to identify stable regions of the parameter space for
model implementation. In Section 3 we focus on modeling the set
of random dot experiments in Watamaniuk and Sekuler (1992)
and Watamaniuk et al. (1989). We show that the model is able to
account for the experimental data and specify the corresponding
parameters. In Section 4wediscuss the biological plausibility of the
model, compare it to alternative approaches, and conclude with
future extensions of the framework.

2. Model

To reproduce, explain and predict motion perception and per-
ceptual decisions from specific motion stimuli, we devised a de-
tailed integrated dynamical motion (IDM) model of visual motion
perception. The model is grounded in the current anatomical and
electrophysiological knowledge of the human and primate visual
system. As such it follows the typical multi-stage view of motion
integration, where a first stage detects motion and is linked to the
activity of V1 or MT component cells (Section 2.1), while a second
stage integrates the activity to extract global motion and is linked
to the activity of MT pattern cells (Section 2.2). The model is able
to reproduce a variety ofMT neural responses, and explain the cor-
responding motion percepts with additional decision mechanisms
linked to neural processing in area LIP (Section 2.3). The interac-
tions between the three layers are represented in Fig. 1.

2.1. Motion detection

We follow a standard approach to define directional V1 cells
by combining the responses of two non-directional V1 subpopu-
lations. Formally, we start by representing stimuli as varying lu-
minance values, noted I(t, x, y) ∈ R where t, x, and y, are the
temporal and visual field positions. The difference between this
approach to direction selectivity in V1 and prior approaches (Adel-
son & Bergen, 1985; Escobar, Masson, Viéville, & Kornprobst, 2009)
is the use of temporally monophasic filters matching primate cell
recordings (De Valois & Cottaris, 1998; De Valois, Cottaris, Mahon,
Elfar, &Wilson, 2000), in addition to the temporally biphasic filters.

The response of directional cells tuned to direction θ is defined
by

D(t, x, y, θ) = (Mθ + B),
t,x,y
∗ , I(t, x, y), (1)

where
t,x,y
∗ denotes the spatiotemporal convolution operator, Mθ ,

is the kernel of temporally monophasic, spatially odd neurons
(the lower left component in Figs. 1 and 2), and B is the kernel
of temporally biphasic, spatially even neurons (the lower right
component in the same figures). The kernel ofmonophasic neurons
is defined as

M(t, x, y) = ΓnM ,τM (GσM (x − a cos θ, y − a sin θ)

−GσM (x + a cos θ, y + a sin θ)), (2)

where Γn,τ and Gσ are temporal and spatial localization functions
respectively, and defined as

Γn,τ (t) = (nt)n
exp(−nt/τ)

(n − 1)! τ n+1
, (3)

which is a Gamma function (de Vries & Principe, 1991), and

Gσ (x, y) =
1

2πσ 2
exp


−

x2 + y2

2σ 2


, (4)

which is a Gaussian function with standard deviation (spread) σ .
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