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a b s t r a c t

In this paper, the interpolation of multivariate data by operators of the neural network type is proved.
These operators can also be used to approximate continuous functions defined on a box-domain of Rd. In
order to show this fact, a uniform approximation theoremwith order is proved. The rate of approximation
is expressed in terms of the modulus of continuity of the functions being approximated. The above
interpolation neural network operators are activated by suitable linear combinations of sigmoidal
functions constructed by a procedure involving the well-known central B-spline. The implications of the
present theorywith the classical theories of neural networks and sampling operators are analyzed. Finally,
several examples with graphical representations are provided.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The function h(x) implementing a neural network (NN) can be
represented by:

h(x) =

n
j=0

cj σ(wj · x + θj), x ∈ Rd, d ∈ N+, (I)

where cj ∈ R are the coefficients, wj ∈ Rd are the weights and
θj ∈ R are thresholds of the NN, for every j = 0, 1, . . . , n. The
termswj ·x denote the inner product inRd between the two vectors
wj and x, while the function σ : R → R is the activation function
of the NN, see, e.g., Pinkus (1999). Typically, σ(x) is a sigmoidal
function, i.e., a measurable function satisfying the properties:

lim
x→−∞

σ(x) = 0, and lim
x→+∞

σ(x) = 1.

Examples of sigmoidal functions are σℓ(x) := (1 + e−x)−1 and
σh(x) := (1/2)(tanh x − 1), x ∈ R, i.e., the well-known logistic
and hyperbolic tangent function, see, e.g., Cybenko (1989).

In the last thirty years, NNs of the form in (I), activated by sig-
moidal functions, have been successfully applied in Approximation
Theory, in order to approximate functions of one or several vari-
ables, see, e.g., Cybenko (1989), Barron (1993), Hahm and Hong
(2002), Lewicki and Marino (2003), Costarelli and Spigler (2013a)
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and Costarelli (2014a). The most common approach used to study
approximation by NNs was the non-constructive one, see, e.g., Cy-
benko (1989). Recently, constructive approximation results have
been proved in both univariate and multivariate settings, see, e.g.,
Costarelli (2014a), where some of them are summarized.

For instance, in Cheney et al. (1992, 1993) the idea of con-
volution kernel from a sigmoidal function is used. This approach
is quite difficult due to the nature of the problem and is based
on some results related to the theory of ridge functions. Another
possibility to obtain constructive NNs activated by sigmoidal func-
tions was described in Lenze (1992), where a convolution ap-
proach is considered again, but for Lebesgue–Stieltjes integrals.
Moreover, wementioned the approach proposed by Barron (1993),
where multivariate functions satisfying a suitable condition in-
volving the Fourier transform of f were approximated in L2-norm.
Further, in the paper (Costarelli and Spigler, 2013a) a constructive
Lp-version of Cybenko’s approximation theorem (Cybenko, 1989)
is provided, in both univariate and multivariate settings. Finally,
in Costarelli and Spigler (2015) the exponential convergence of
certain NNs constructed by sigmoidal function is proved by an
approach based on multiresolution approximation and the corre-
sponding wavelet scaling functions. For other results concerning
NNs and their applications to approximation problems, see, e.g.,
Costarelli and Spigler (2013b, 2014a), Gripenberg (2003), Ismailov
(2014), Kainen and Kurková (2009), Kurková (2012), Makovoz
(1996, 1998) and Maiorov (2006).

The approaches used to obtain the results quoted and described
above present some difficulties and are not obvious. The theory of
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NN operators has been introduced in order to study a constructive
approximation process by NNs, which was more intuitive than
those proposed in previous papers. Moreover, results for NN
operators can be proved by using techniques typically used in
Operator Theory.

The NN operators Nσn were introduced by G.A. Anastassiou
in Anastassiou (1997), where the results originally proved in
Cardaliaguet and Euvrard (1992) by P. Cardalignet and G. Euvrard
have been extended. The above NN operators were defined by:

Nσn (f , x) :=

⌊nb1⌋
k1=⌈na1⌉

· · ·

⌊nbs⌋
ks=⌈nas⌉

f

k/n


Ψσ (nx − k)

⌊nb1⌋
k1=⌈na1⌉

· · ·

⌊nbs⌋
ks=⌈nas⌉

Ψσ (nx − k)

, x ∈ R (II)

whereR := [a1, b1]×· · ·×[ad, bd] ⊂ Rd, n ∈ N+, f : R → R be
a given bounded function, andΨσ (x) := φσ (x1) · · ·φσ (xd), x ∈ Rd,
is the multivariate density functions defined through the product
of d one-dimensional density functions φσ (x) :=

1
2 [σ(x + 1) −

σ(x − 1)], x ∈ R.
In Anastassiou (2011a,b,c, 2012), Anastassiou studied neural

network operatorsNσn both in univariate andmultivariate settings,
for the special cases of logistic and hyperbolic tangent sigmoidal
activation functions, i.e., with σ(x) = σℓ(x) and σ(x) = σh(x).
Approximation results involving continuous functions defined on
bounded domains were proved therein for the family (Nσn )n∈N+ ,
together with estimates concerning the order of approximation.

Subsequently, other results concerning the NN operators Nσn
have been obtained in Cao and Chen (2009, 2012) and Costarelli
and Spigler (2013c,d, 2014b). In particular, in Costarelli and
Spigler (2013c,d) the approximation results proved in Anastassiou
(2011a,b,c, 2012) have been extended, in order to consider NN
operators activated by any sigmoidal function σ(x) belonging to
a suitable class which contains also σℓ(x) and σh(x). Moreover, the
results concerning the order of approximation have been improved
therein.

Further, in Costarelli and Spigler (2014b) NN operators of the
Kantorovich type have been introduced in order to study the
problem of approximating Lp functions, for 1 ≤ p < +∞.

An important task for NNs is the capability to interpolate any
given data. This problem is strictly related with the theory of
trainingneural networks. Indeed,NNswhich are able to interpolate
data belonging to a suitable training set can be used to reproduce
exactly certain values, without errors.

The above problem has been already studied by many authors
(see e.g. Dasgupta and Shristava, 1990; Llanas and Sainz, 2006;
Sontag, 1992) by means of analytical or algebraic approaches. By
the word analyticalwe refer to results proved by non-constructive
arguments, while by the word algebraic we refer to proofs in
which the coefficients of interpolating NNs are obtained by solving
suitable linear algebraic systems.

Concerning the theory of NN operators, in general the Nσn does
not interpolate, i.e., Nσn (f , k/n) ≠ f (k/n), for any given bounded
function f : R → R, n ∈ N+ and k ∈ Zd. In Costarelli (2014b),
interpolationNNoperatorshave been introduced in one-dimensional
setting, by a substantial modification in the definition of Nσn , when
d = 1. The changes that have been done in the one-dimensional
frame in order to introduce interpolating NN operators, focused
on the univariate density functions, the nodes where the sample
values (i.e., the coefficients) of the NN are computed, and other
important elements such as the weights and the threshold values.

It is well-known that the theory of NNs is mainly multivariate
since applications to neurocomputing processes usually involve
high dimensional data, then a multivariate extension of results
proved in Costarelli (2014b) is needed.

In this paper, the interpolation of functions of several variables,
defined on box-domain of Rd, by means of multivariate operators
F s
n (introduced in Section 2) of the NN type is proved. For the sake
of simplicity, the points where a given function is interpolated are
in general taken on a uniform spaced grid. However, even if the
grid is not uniformly spaced, or more in general the points are
not disposed over a grid, NN operators which interpolate a given
function at such nodes can be constructed (see Section 2.1).

In order to obtain such results, as happens in one-dimensional
case, the definition of the operators Nσn must be strongly modified.
Here for instance, themultivariate density functionsΨσ (x)must be
replaced by Ψs(x), which are defined by sigmoidal functions con-
structed by a certain procedure involving the well-known central
B-spline, see, e.g., Costarelli and Spigler (2015). In this way, we are
able to consider a general family of activation functions, including
for instance some known examples, such as the ramp function, see,
e.g., Cao and Chen (2012), Cheang (2010) and Costarelli (2014a).

In order to describe the behavior of the operators F s
n at points of

R where continuous functions f are in general not interpolated, a
uniform approximation theorem with order is also obtained. The
rate of approximation is expressed in terms of the modulus of
continuity of the function being approximated. Both interpolation
and approximation results (see Theorems 2.5 and 2.6 in Section 2)
proved in this paper are themultivariate versions of theorems first
proved in Costarelli (2014b) in one-dimensional setting. In Sec-
tion 3 some concrete examples of approximations and interpola-
tions are presented, in both one and two space dimensions.

Finally, in Section 4 the main results of this paper are discussed
in relation to the theory of NNs, with particular attention to
the field of applications, such as, applications to the training of
NNs. Moreover, a detailed comparison between Nσn and F s

n is
made, together with a discussion among the results here proved
and those already existing concerning interpolation by NNs. In
addition, the relations between NNs and sampling operators are
pointed out.

2. The main results

We first introduce some notations and preliminary concepts.
In this paper, we will denote by Ms(x), the well-known one-
dimensional central B-spline of order s ∈ N+ (see, e.g., Bardaro
et al., 2003; Butzer and Nessel, 1971), defined as follows:

Ms(x) :=
1

(s − 1)!

s
i=0

(−1)i

s
i

 s
2

+ x − i
s−1

+

, x ∈ R,

where the function (x)+ := max {x, 0} denotes the positive part of
x ∈ R.

In Costarelli and Spigler (2015), a procedure to construct
sigmoidal functions by using the central B-spline of order s has
been described. More in detail, for any given positive integer s, we
will denote by σs(x) the sigmoidal function:

σs(x) :=

 x

−∞

Ms(t) dt, x ∈ R. (1)

Note that, σs(x) are non-decreasing and 0 ≤ σs(x) ≤ 1, for every
x ∈ R and s ∈ N+. We are now able to introduce the non-
negative one-dimensional density functions by the following finite
linear combination of σs:

φs(x) := σs(x + 1/2)− σs(x − 1/2), x ∈ R. (2)

We will use the density functions defined above as activation
functions of the neural network operators studied in this paper.

It is easy to see that, the functions of the form φs(x) satisfy the
following useful properties:



Download	English	Version:

https://daneshyari.com/en/article/403873

Download	Persian	Version:

https://daneshyari.com/article/403873

Daneshyari.com

https://daneshyari.com/en/article/403873
https://daneshyari.com/article/403873
https://daneshyari.com/

