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a b s t r a c t

The urgent problemof impulsivemomentswhich cannot be determined in advance brings new challenges
beyond the conventional impulsive systems theory. In order to solve this problem, the novel concept
of impulsive time window is proposed in this paper. And the stability problem of stochastic fuzzy
uncertain delayed neural networks with impulsive time window is investigated. By combining the
discretized Lyapunov function approachwithmathematical inductionmethod, several novel and easy-to-
check sufficient conditions concerning the impulsive time window are derived to ensure that the model
considered here is exponentially stable in mean square. Numerical simulations are presented to further
demonstrate the effectiveness of the proposed stability criterion.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since mathematical modeling of physical systems and pro-
cesses in many areas of engineering often leads to complex non-
linear systems, which brings several difficulties to analysis and
synthesis, researchers have been seeking effective methods for the
control of nonlinear system. It is well known that there has been
a turning point in one of the most effective methods in accor-
dance with the advent of the fuzzymodel (Takagi & Sugeno, 1985),
which is among all of modes to solve the control of complex non-
linear system. Recently, an army of results have been advanced
for the fuzzy model which has received increasing attention re-
search because it can provide an effective solution to the control
of plants that are mathematically ill-defined, uncertain and non-
linear (Chen & Zheng, 2013; Ho & Sun, 2007; Huang, Ho, & Lam,
2005; Li, Rakkiyappan, & Balasubramaniam, 2011; Rakkiyappan &
Balasubramaniam, 2010; Song&Cao, 2007; Takagi & Sugeno, 1985;
Wang, Ho, & Liu, 2004; Wu, Su, Shi, & Qiu, 2011; Zhang, Wang, &
Liu, 2008). The main feature of the fuzzy model is to express the
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local dynamics of each fuzzy rule by a linear system model and to
express the overall system by fuzzy ‘‘blending’’ of the local linear
system models. To date, fuzzy model has been suggested as an al-
ternative approach to conventional control techniques for complex
control systems.

For many applications which have been found in various fields,
neural networks have been extensively studied and developed
(He, Li, & Huang, 2013; Li, Liao, & Lei, 2013; Wang, Liao, &
Huang, 2013a, 2013b; Wen, Bao, Zeng, Chen, & Huang, 2013;
Wen, Zeng, & Huang, 2013; Wen, Zeng, Huang, & Chen, 2013;
Zeng, Huang, & Zheng, 2010; Zeng, Wang, & Liao, 2003; Zeng
& Zheng, 2012). In the real world, neural networks are often
subjected to external disturbances. Generally speaking, there are
two kinds of disturbances considered: parameter uncertainties
and stochastic perturbations. Therefore, it is necessary to consider
both parameter uncertainties and stochastic effects on the stability
of neural networks (Huang, Li, Duan, & Starzyk, 2012; Lu, Cao,
Mahdavi, & Huang, 2012; Wong, Zhang, Yang, & Wu, 2013;
Yang, Cao, & Lu, 2012; Yu & Cao, 2007). On the other hand, the
states of electronic networks and biological networks are often
subjected to instantaneous disturbances and experienced abrupt
changes at certain instants, which may be caused by switching
phenomenon, frequency changes, or other sudden noise, i.e., they
exhibit impulsive effects (Li, 2009; Li, Feng, & Huang, 2008; Li &
Song, 2013; Li & Zhang, 2009; Lu, Ho, & Cao, 2010, 2011; Song &
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Zhang, 2008; Zhang, Tang, Fang, & Wu, 2012; Zhang, Tang, Miao,
& Du, 2013; Zhang, Tang, Miao, & Fang, 2014; Zhang, Tang, Wu, &
Fang, 2013). Moreover, time delays are often encountered in the
real world due to finite switching speed of amplifiers. Hence, it is
of great importance to both investigate delay and impulsive effects
on the stochastic stability of neural networks.

It is widely recognized that there are two kinds of impulsive
effects, i.e., stabilizing impulses and destabilizing impulses (Lu
et al., 2010). Recently, in Wong et al. (2013), a novel strategy
named mixed impulses has been proposed. Hence, the previous
results which only concerned the lower bound or upper bound
of the impulsive sequences become trivial. Moreover, in many
actual control systems, the impulsive moments almost cannot be
specified in advance. Therefore, it becomes desirable to discuss the
impulsive systems with impulsive time window. To the best of the
authors’ knowledge, the problem of stochastic stability for fuzzy
uncertain delayed neural networks with impulsive timewindow is
still an open issue. It is, therefore, themotivation behind our efforts
to bridge this gap by studying stochastic stability of fuzzy neural
networks with impulsive time window.

Motivated by the shortcoming of the aforementioned research
in this area, in this paper, the problem of stochastic stability for un-
certain delayed fuzzy neural networks with impulsive time win-
dow is investigated. Based on the discretized Lyapunov function
method and mathematic induction method, several stability cri-
teria are derived under which stochastic uncertain delayed fuzzy
neural networks with impulsive time window are exponentially
stable in mean square. The main contributions of this paper can be
listed as follows: (1) the stochastic uncertain delayed neural net-
works both considered the T–S model and impulsive time window
are firstly constructed; (2) a unified framework is established to
handle stochastic, parameter uncertainty, impulsive time window
and fuzzy rule; (3) some approximation algorithms are proposed to
compute the lower and upper bounds of the impulsive time win-
dow, respectively. The rest of this paper is arranged as follows. In
the next section, the problem to be considered and some needed
preliminaries are presented. The main results are derived in Sec-
tion 3. In Section 4, we present several simulation examples to
verify the effectiveness of our theoretical results. Finally, the con-
clusions are drawn in Section 5.

2. Model description and some preliminaries

In this section, some preliminaries are given including model
formulation, lemmas, and definitions.

Consider the following stochastic uncertain delayed neural
networks:

dx(t) = [−(C + 1C)x(t) + (A + 1A)f (x(t))
+ (D + 1D)f (x(t − τ(t)))]dt
+ [1W0x(t) + 1W1x(t − τ(t))]dW (t)

x(t) = φ(t), t ∈ [−τ , 0]

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vec-
tor associated with the neurons; C = diag(c1, c2, . . . , cn) > 0
is a positive diagonal matrix, A = (aij)n×n and D = (dij)n×n are
the connection weight matrices; 1C, 1A, 1D, 1W0 and 1W1 are
time-varying matrices on Rn×n that denote the parameter uncer-
tainties. f (x(t)) = (f1(x(t)), f2(x(t)), . . . , fn(x(t)))T denotes the
neuron activation function vector; τ(t) is the transmission delay
that satisfies 0 ≤ τ(t) ≤ τ , where τ is a positive scalar. W (t) =

[ω1(t), ω2(t), . . . , ωn(t)]T is an n-dimension Brown motion.
Taking impulsive timewindoweffects into account,wehave the

following model:
dx(t) = [−(C + 1C)x(t) + (A + 1A)f (x(t))

+ (D + 1D)f (x(t − τ(t)))]dt
+ [1W0x(t) + 1W1x(t − τ(t))]dW (t), t ≠ tk

x(t+k ) = Bkx(t−k ), tk ∈ Dk
x(t) = φ(t), t ∈ [−τ , 0]

(2)

where Dk are the time window of impulsive times tk, i.e., Dk =

[dkmin + tk−1, dkmax + tk−1), where dkmin and dkmax denote the mini-
mum andmaximum residence time, respectively. Bk are impulsive
gain at impulsive instants tk; x(t+k ) = limσ→0+x(tk + σ), x(t−k ) =

limσ→0−x(tk + σ).
In this paper, a general class of stochastic fuzzy uncertain de-

layed neural networkswith impulsive timewindow, are discussed.
As in Takagi and Sugeno (1985), the model of stochastic fuzzy un-
certain delayed neural networks with impulsive time window is
composed of r plant rules that can be described as follows:

Plant Rule i:

IF z1(t) is Mi1 and · · · and zp(t) isMip
THEN


dx(t) = [−(Ci + 1Ci)x(t) + (Ai + 1Ai)f (x(t))

+ (Di + 1Di)f (x(t − τ(t)))]dt
+ [1W 0

i x(t) + 1W 1
i x(t − τ(t))]dW (t), on t ≠ tk

x(t+k ) = Bikx(t−k ), on tk ∈ Dk
x(t) = φ(t), on t ∈ [−τ , 0]

(3)

where i = 1, 2, . . . , r , Mij(j = 1, . . . , p) are the fuzzy sets, z(t) =

(z1(t), z2(t), . . . , zp(t))T is the premise variable vector, r is the
number of fuzzy IF-THEN rules. It is known that (3) has a unique
global solution on t ≥ 0 with the initial value φ(t) ∈ L([−τ , 0],
Rn).

By the singleton fuzzifier, the product inference engine and the
center average defuzzifier, the final output of the fuzzy system (3)
is inferred as follows:

dx(t) =

r
i=1

hi(z(t)){[−(Ci + 1Ci)x(t)

+ (Ai + 1Ai)f (x(t))
+ (Di + 1Di)f (x(t − τ(t)))]dt
+ [1W 0

i x(t) + 1W 1
i x(t − τ(t))]dW (t)}, t ≠ tk

x(t+k ) =

r
i=1

hi(z(t))Bix(t−k ), tk ∈ Dk

(4)

where

hi =
wi(z(t))
r

i=1
wi(z(t))

, wi(z(t)) =

p
j=1

Mij(zj(t))

and Bi = (Bi1, Bi2, . . . , Bik)
T ,Mij(zj(t)) denotes the grade of mem-

bership of zj(t) in Mij. Note that
r

i=1

hi(z(t)) = 1, hi(z(t)) ≥ 0, i = 1, 2, . . . , r.

Remark 1. From the second equation of (4), it is obvious that a set
of controlmatricesBi and impulsive timewindowDk are to be de-
signed to guarantee the stochastic exponential stability of model
(4) in mean square. The impulsive control strategy considered
here has some favorable features which are described as follows:
(1) The impulse effects here are dependent on the fuzzy rules,
namely, both stabilizing and destabilizing impulses are consid-
ered. (2) The impulses occur in a randommanner in the impulsive
time window. (3) The impulsive effects can be distinct at differ-
ent impulsive instants. Moreover, it is noted that impulsive control
strategy considered here can be directly used to realize the state-
dependent impulsive control strategy.

Remark 2. In the following sequel, we will illustrate that the im-
pulses considered here encompass the impulses in the previous
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