
Neural Networks 67 (2015) 131–139

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Low-dimensional recurrent neural network-based Kalman filter for
speech enhancement✩

Youshen Xia a,∗, Jun Wang b

a College of Mathematics and Computer Science, Fuzhou University, China
b Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:
Received 25 May 2014
Received in revised form 1 March 2015
Accepted 19 March 2015
Available online 7 April 2015

Keywords:
Recurrent neural network
Speech enhancement
Non-Gaussian noise
Noise-constrained estimation

a b s t r a c t

This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement,
based on a noise-constrained least squares estimate. The parameters of speech signal modeled as
autoregressive process are first estimated by using the proposed recurrent neural network and the
speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally
asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has
a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech
enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian
noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech
enhancement algorithm has a much faster speed than two existing recurrent neural networks-based
speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-
based speech enhancement algorithm can produce a good performance with fast computation and noise
reduction.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Speech enhancement techniques have been successfully used
in many areas such as mobile communication systems, speech
recognition systems, and hearing aid devices, where received
speech signals are corrupted by white or colored noise (Kay, 1993;
Loizou, 2007). Themain objective of speech enhancement is to im-
prove the performance of speech communication in noise envi-
ronments. Over the past decades, much research has focused on
this area. Speech enhancement techniques may be divided into
single-channel speech enhancement andmulti-channel speech en-
hancement (Bobillet et al., 2007; Boll, 1979; Doclo & Moonen,
2002, 2005; Ephraim &Malah, 1984; Epharim & Van Trees, 1995a;
Ephraim & Van Trees, 1995b; Gabrea, 2005; Gabrea, Grivel, & Na-
jim, 1999; Gannot, Burshtein, & Weinstein, 1998; Gerkmann &
Hendriks, 2012; Gibson, Koo, & Gray, 1991; Kay, 1993; Labarre,
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Grivel, Najim, & Todini, 2004; Lee & Jung, 2000; Ning, Bouchard, &
Goubran, 2006; Roberto & Guidorzi, 2007;Wang, Li, & Dong, 2010;
Xia&Yu, 2010; Xia, 2012; Xia&Wang, 2013). In this paperwe focus
on the single-channel speech enhancement.

There aremainly three types of single-channel speech enhance-
ment algorithms. The first type is called the frequency domain
method, including the Wiener filter algorithm and the MMSE am-
plitude spectrum estimation algorithm (Doclo & Moonen, 2005;
Ephraim &Malah, 1984; Gerkmann & Hendriks, 2012; Wang et al.,
2010). The Wiener algorithm requires estimating the power spec-
tra of speech and noise and its performance depends on the esti-
mation of the speech and noise spectra. The Wiener algorithm has
a good noise reduction effect but could muffle speech. The MMSE
amplitude spectrum estimation algorithm consists of two parts: a
priori SNRestimate and anMMSE spectral amplitude estimate. This
algorithm has a better performance than the conventional spec-
tral subtraction algorithm (Boll, 1979), however, it needs an as-
sumption that an estimate of the speech spectrum is available and
white noise is Gaussian. The second type is the subspace method.
Signal enhancement is to remove the noise subspace and to es-
timate the clean speech signal from the noisy speech subspace.
Traditional subspacemethods are suitable forwhite noise environ-
ments (Epharim & Van Trees, 1995a; Ephraim & Van Trees, 1995b).
Several improved subspace methods were presented to deal with
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colored noise by adding the computational task for eigendecompo-
sition of a non-symmetric matrix (Doclo & Moonen, 2002; Wei &
Xia, 2013). The third type is called the parameter estimation-based
Kalman filtering method in which the speech signal is modeled
as autoregressive process and the speech signal is then recovered
from Kalman filtering (Bobillet et al., 2007; Gabrea, 2005; Gabrea
et al., 1999; Gannot et al., 1998; Gibson et al., 1991; Labarre et al.,
2004; Lee & Jung, 2000; Ning et al., 2006; Park & Choi, 2008). Com-
pared with other two type methods, the Kalman filtering method
has no assumption of stationary speech signals.

Traditional parameter estimation-based Kalman filtering algo-
rithms differ only by the choice of the algorithm used to esti-
mate model parameters and the choice of the models adopted for
the speech signal and additive noise. For example, Gibson et al.
(1991) proposed a method that provides a sub-optimal solution,
using the estimate-maximize algorithm based on the maximum
likelihood argument. Gannot et al. (1998) proposed the use of the
EM algorithm to iteratively estimate the spectral parameters of
speech and noise parameters. Lee and Jung (2000) have devel-
oped a time-domain approach,without a priory information, to en-
hance speech signals. Gabrea presented (Gabrea, 2005) an adaptive
parameter estimation method. Bobillet et al. presented (Labarre
et al., 2004) an optimal smoothing and parameter identification
algorithm. These parameter identification algorithms have a stan-
dard Gaussian noise assumption (Alimorad & Mahmood, 2011). To
deal with the situation in non-Gaussianwhite noise environments,
the Bayesian estimation-basedmethodswere developed (Alliney&
Ruzinsky, 1994; Christmas & Everson, 2011; Giannakis & Mendel,
1990; Smidl & Quinn, 2005). Park and Choi presented (Park & Choi,
2008) a neural network method for speech enhancement. Among
these methods, the noise statistical distribution is required to be
known and there is also a slow speed for parameter learning. Re-
cently, to avoid the requirement of a priori statistical information,
two noise constrained estimation-based methods for robust pa-
rameter identificationwere presented byminimizing a generalized
least absolute deviation cost function and a quadratic cost function
(Xia & Kamel, 2008; Xia, Kamel, & Henry, 2010), respectively. For
their implementation, two recurrent neural networks were pre-
sented in Xia (2012) and Xia and Yu (2010), respectively. Because
the two neural networkmethods have the total number of neurons
which is larger than the sample length of the speech signal, their
order of complexity is usually depends on the sample length of the
speech signal. So, resulting neural network-based speech enhance-
ment algorithms have a very slower speed.

To increase computational efficiency, we propose a low-
dimensional recurrent neural network for fast speech enhance-
ment by using a noise-constrained least squares estimate for
Kalman filter parameters. It is shown that the proposed neural
network is globally asymptomatically stable to the optimal so-
lution of a noise constrained estimation problem. Because the
noise-constrained estimate has a robust performance against non-
Gaussian noise, the proposed recurrent neural network-based
speech enhancement algorithm can minimize the estimation er-
ror of Kalman filtering parameters in non-Gaussian noise. Further-
more, having the low order of complexity, the proposed neural
network-based speech enhancement algorithm has a much faster
speed than two existing recurrent neural networks-based speech
enhancement algorithms. Simulation results show that the pro-
posed recurrent neural network-based speech enhancement algo-
rithm produces a good performance in fast computation and noise
reduction.

The paper is organized as follows. In Section 2, autoregressive
(AR)model and its noise-constrained estimation are introduced. In
Section 3, two existing recurrent neural networks for estimating
the AR model parameter are discussed, and a new recurrent
neural network with global convergence is proposed. In Section 4,

the speech model and Kalman filter are described, and a new
recurrent neural network-based speech enhancement algorithm is
presented. In Section 5, computed examples are reported. Section 6
gives the concluding remarks of this paper.

2. AR model and estimation

Consider the following pth-order AR signal system:

x(t) =

p
i=1

a∗

i x(t − i) + v(t), (1)

where p is the known order of the system, a∗
= [a∗

1, . . . , a
∗
p]

T is
the unknown AR parameter vector, v(t) is the driving noise, x(t) is
an AR signal process with x(t) = 0 for t ≤ 0, and x(t) is observed
in additive measurement noise w(t):

y(t) = x(t) + w(t), (2)

and w(t) is assumed to be uncorrelated with v(t). For simplicity,
we denote the noisy signal vector by yt = [y(t−1), . . . , y(t−p)]T ,
and the measurement noise vector bywt = [w(t − 1), . . . , w(t −

p)]T . Then the AR signal observation model can be written as

y(t) = yt Ta∗
− n(t), (3)

where n(t) = wt
Ta∗

− w(t) − v(t). The problem under study is to
estimate AR parameter vector a∗ from noisy observations {y(t)}N1
whereN is the number of observations. Themost basic approach to
estimate the AR parameter vector is the least square (LS) method.
The LS estimation minimizers

E(a) =
1
N

N
t=1

(y(t) − yt Ta)2

and is given by

aLS =


1
N

N
t=1

ytyt T
−1 

1
N

N
t=1

yty(t)


,

where a = [a1, . . . , ap]T . In addition, there is an error between the
LS estimate aLS and the true AR parameter vector a∗:

aLS ≈ a∗
− σ 2R̂−1a∗,

where R̂ =
1
N

N
t=1 ytyt

T and σ 2 is the variance of the measure-
ment noise.

Many AR parameter estimation methods have been developed
to improve the LS estimation. For example, one is called the
instrumental variable (IV) method (Bobillet et al., 2007; Labarre
et al., 2004). Most of the IV algorithms is used for solving a
set of high-order Yule–Walker equations. Another is called the
bias correction method (Alimorad & Mahmood, 2011) where the
AR model parameters, the observation noise variance, and the
driving noise variance are estimated in an alternating iteration. The
main feature among them is that the estimate of the AR model
parameters is usually dependent on the estimate of observation
noise variance with an assumption of Gaussian white noise. In
practice, the noise corrupted in noisy speech is usually non-
Gaussian and colored. Although the Bayesian estimation method
developed can handle non-Gaussian noise cases (Christmas &
Everson, 2011; Smidl & Quinn, 2005), it requires a priori statistical
information.

Recently, to avoid a priori statistical information, two noise-
constrained estimation methods were developed in Xia and
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