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a b s t r a c t

Following the ideas of the axiomatic characterization of the Choquet integral due to [D. Schmeidler, Inte-
gral representation without additivity, Proc. Amer. Math. Soc. 97 (1986) 255–261] and of the Sugeno inte-
gral given in [J.-L. Marichal, An axiomatic approach of the discrete Sugeno integral as a tool to aggregate
interacting criteria in a qualitative framework, IEEE Trans. Fuzzy Syst. 9 (2001) 164–172], we provide a
general axiomatization of some classes of discrete universal integrals, including the case of discrete cop-
ula-based universal integrals (as usual, the product copula corresponds just to the Choquet integral, and
the minimum to the Sugeno integral).

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this contribution, we restrict ourselves to a fixed finite space
X = {1, . . . ,n}, and we will deal with functions from X to [0,1] which
we identify with n-dimensional vectors x = (x1, . . . ,xn). From the
application point of view, we can look at x as a score vector of some
alternative characterized by n criteria. To be able to decide which
of the alternatives described by the score vectors x and y, respec-
tively, is to be preferred, a typical approach is to evaluate both x
and y by means of some utility function U.

The utility function U is often constructed from a boolean utility
function B acting on x 2 {0,1}n. However, each such boolean utility
function B can be seen as a capacity m : 2X ? [0,1], m(E) = B(1E).
Typical extension approaches are related to integration, i.e.,
U(x) = I(m,x), where I(m, �) is some integral on X with respect to
the capacity m.

Another approach is based on some axiomatization (and bool-
ean utility function B). It is well-known that the additivity of the
utility function U : [0,1]n ? [0,1] is related to the application of
Lebesgue integral, UðxÞ ¼

R
x dm, and then also the capacity m

should be additive. Putting m({i}) = wi, we obtain the well-known
weighted arithmetic mean, UðxÞ ¼

Pn
i¼1wi � xi.

Our contribution recalls some classes of universal integrals
(including, among others, the Choquet, the Sugeno and the Lebes-
gue integral) and provides corresponding axiomatizations.

Because of the link to utility functions, we restrict ourselves to
(normed) capacities and to input values from [0,1], although many
integrals mentioned here (including the Choquet and Sugeno inte-
gral) can be considered in a more general (unbounded) framework
[14].

However, we do not consider any further restriction concerning
the underlying capacity, such as additivity or pseudo-additivity,
and thus we will not deal with integrals based on such special
capacities (compare, e.g., [20,22,27]).

The paper is organized as follows. In the following section, the
Choquet and the Sugeno integral as well as their axiomatizations
are summarized. In Section 3, we recall (discrete) copula-based
integrals and some other classes of discrete universal integrals,
including some examples. In Section 4, the axiomatization of these
discrete universal integrals is given. As a special case, symmetric
discrete copula-based universal integrals (generalizing OWA oper-
ators) are discussed.

2. Choquet and Sugeno integrals, and their axiomatization

Though all integrals discussed in this paper can be defined on an
arbitrary measurable space, in this paper we consider (as already
mentioned) the finite space X = {1, . . . ,n} only, equipped with the
r-algebra 2X = {EjE # X}.

Definition 2.1. A capacity on X is a set function m : 2X ? [0,1]
which is non-decreasing, i.e., we have m(E) 6m(F) whenever
E # F # X, and satisfies the boundary conditions m(;) = 0 and
m(X) = 1.
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Then the Choquet integral [3] of x with respect to a capacity
m : 2X ? [0,1] is defined by

Chðm; xÞ ¼
Z 1

0
mðfijxi P tgÞ dt

¼
Xn

i¼1

xpi
� ðmðfpi; . . . ;pngÞ �mðfpiþ1; . . . ;pngÞÞ; ð1Þ

for some permutation (p1,p2, . . . ,pn) of {1, . . . ,n} satisfying
xp1 6 xp2 6 � � � 6 xpn , where the set {pn+1,pn} occurring in the last
summand is defined to be the empty set ;.

Obviously, we have m(E) = Ch(m,1E) for each E # X. Observe
that if m is additive (i.e., m is a discrete probability measure) then
the Choquet integral coincides with the Lebesgue integral, i.e.,
Chðm;xÞ ¼

R
x dm.

Similarly, the Sugeno integral [26] of x with respect to a capacity
m : 2X ? [0,1] is given by

Suðm;xÞ ¼
_1
t¼0

ðt ^mðfijxi P tgÞÞ ¼
_n
i¼1

ðxpi
^mðfpi; . . . ;pngÞÞ: ð2Þ

Note that we use the symbols ^ and _ in the sense x ^ y =
min(x,y) and x _ y = max(x,y). Clearly, also for the Sugeno integral
we have m(E) = Su(1E) for all E # X.

In what follows, the comonotonicity of score vectors plays a
crucial role.

Definition 2.2 [23]. Let x, y 2 [0,1]n. Then x and y are said to be
comonotone if, for all i, j 2 {1,2, . . . ,n}, we have
(xi � xj) � (yi � yj) P 0.

In other words, for comonotone x, y 2 [0,1]n it is impossible to
have xi > xj and yi < yj. In [23] an axiomatic characterization of the
Choquet integral as a comonotone aggregation function [4,8] was
given.

Definition 2.3

(i) An (n-dimensional) aggregation function is a function
A : [0,1]n ? [0,1] which is non-decreasing in each compo-
nent and satisfies the boundary conditions A(0, . . . ,0) = 0
and A(1, . . . ,1) = 1.

(ii) An aggregation function A : [0,1]n ? [0,1] is said to be
comonotone additive if, for all x, y 2 [0,1]n which are
comonotone and satisfy x + y 2 [0,1]n, we have

Uðxþ yÞ ¼ UðxÞ þ UðyÞ:

Observe that the comonotone additivity of an aggregation func-
tion U implies its positive homogeneity, i.e., U(c � x) = c � U(x) for all
c P 0 and x 2 [0,1]n with c � x 2 [0,1]n.

Proposition 2.4 [23]. Let U : [0,1]n ? [0,1] be an n-ary aggregation
function. Then the following are equivalent:

(i) There is a capacity m : 2X ? [0,1] such that U(�) = Ch(m, �).
(ii) U is comonotone additive.

In the case of Sugeno integral, its axiomatization was given in
[16].

Proposition 2.5 [16]. Let U : [0,1]n ? [0,1] be an n-ary aggregation
function. Then the following are equivalent:

(i) There is a capacity m : 2X ? [0,1] such that U(�) = Su(m, �).
(ii) U is ^-homogeneous and comonotone maxitive, i.e., for each

c 2 [0,1], the constant score vector c = (c, . . . ,c) and all comono-
tone x, y 2 [0,1]n we have

Uðc ^ xÞ ¼ c ^ UðxÞ;
Uðx _ yÞ ¼ UðxÞ _ UðyÞ:

Observe that the comonotone maxitivity of an aggregation
function U does not imply its ^-homogeneity. Note that there are
some alternative axiomatic approaches to the Sugeno integral
(compare [1,16]).

3. Some classes of discrete universal integrals

We briefly recall some classes of discrete universal integrals which
will be characterized in an axiomatic way in Section 4. For functions
with values in the nonnegative real numbers, the concept of a univer-
sal integral which can be defined on arbitrary (not necessarily finite)
measurable spaces and for arbitrary capacities, was introduced
axiomatically and investigated in [14]. It is based on a special type
of binary aggregation function, the so-called semicopula [5].

Definition 3.1. A semicopula is two-dimensional aggregation
function � : [0,1]2 ? [0,1] with neutral element 1.

Given a semicopula �[0,1]2 ? [0,1] and a capacity m: ? [0,1]
we will require that each discrete universal integral acts on
[0,1]n as a special aggregation function.

Definition 3.2. Let � : [0,1]2 ? [0,1] be a semicopula and let
m : 2X ? [0,1] be a capacity on X. A discrete universal integral (based
on �) is an aggregation function I�,m : [0,1]n ? [0,1] such that

(i) for all c 2 [0,1] and all E # X we have I�,m(c � 1E) = c �m(E);
(ii) for all x, y 2 [0,1]n with m({i 2 Xjxi P t}) = m({j 2 Xjyj P t})

for all t 2 [0,1] we have I�,m(x) = I�,m(y).

Note that each discrete universal integral as given in Definition
3.2 is an idempotent aggregation function because of

I�;mðc; c; . . . ; cÞ ¼ I�;mðc � 1XÞ ¼ c �mðXÞ ¼ c � 1 ¼ c:

Observe that if a capacity m assumes values in {0,1} only then
all discrete universal integrals are independent of the semicopula
�, and they correspond to lattice polynomials (compare [15]).
Moreover, the class of discrete universal integrals is convex, i.e.,
for each monotone measure m, for all discrete universal integrals
Ið1Þ�1 ;m

and Ið2Þ�2 ;m
based on the semicopulas �1 and �2, respectively,

and for each k 2 [0,1], also

I�;m ¼ k � Ið1Þ�1 ;m
þ ð1� kÞ � Ið2Þ�2 ;m

is a discrete universal integral based on the semicopula
� = k � �1 + (1 � k) � �2.

3.1. Discrete copula-based universal integrals

Universal integrals (acting on the interval [0,1]) were intro-
duced and discussed in [14]. A special kind of universal integrals
on the scale [0,1] is based on copulas [21,25], compare also [13].

Definition 3.3. A (binary) copula C : [0,1]2 ? [0,1] is a semicopula
which is supermodular, i.e., for all x, y 2 [0,1]2

Cðx _ yÞ þ Cðx ^ yÞP CðxÞ þ CðyÞ: ð3Þ

We are not going into details about universal integrals and
copulas here, we only recall the following important result (see
Remark 5.3, 2 in [14]):

Proposition 3.4 [14]. Let C : [0,1]2 ? [0,1] be a copula and
m : 2X ? [0,1] a capacity, and define KC (m, �) : [0,1]n ? [0,1] by
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