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a b s t r a c t

The success of semi-supervised clustering relies on the effectiveness of side information. To get effective
side information, a new active learner learning pairwise constraints known as must-link and cannot-
link constraints is proposed in this paper. Three novel techniques are developed for learning effective
pairwise constraints. The first technique is used to identify samples less important to cluster structures.
This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples
neither important to locally linear propagation reconstructions of other samples nor on flat patches in
the learned manifold are regarded as unimportant samples. The second is a novel criterion for query
selection. This criterion considers not only the importance of a sample to expanding the space coverage
of the learned samples but also the expected number of queries needed to learn the sample. To facilitate
semi-supervised clustering, the third technique yields inferred must-links for passing information about
flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have
shown that the learned pairwise constraints can capture the underlying cluster structures and proven the
feasibility of the proposed approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Data clustering algorithms are important tools of data analysis
(Jain,Murty, & Flynn, 1999; Xu&Wunsch, 2005). It has been shown
that the accuracy of data clustering may be improved by making
use of a small amount of side information. Such a kind of data clus-
tering is known as semi-supervised clustering (Grira, Crucianu, &
Boujemaa, 2004; Jain, 2010). It is known that the success of semi-
supervised clustering relies on effective side information (David-
son, Wagstaff, & Basu, 2006). In Grira, Crucianu, and Boujemaa
(2008), Hofmann and Buhmann (1997), Huang and Lam (2009),
Klein, Kamvar, and Manning (2002), Nogueira, Jorge, and Rezende
(2012) andWolf, Litwak, Dershowitz, Shweka, andChoueka (2011),
active learners are embedded in semi-supervised clustering
algorithms because active learning provides means of inquiring
useful side information. Active learning and semi-supervised clus-
teringmay also be two separated stages (Basu, Banerjee, &Mooney,
2004;Greene&Cunningham, 2007;Mallapragada, Jin, & Jain, 2008;
Voevodski, Balcan, Röglin, Teng, & Xia, 2012; Vu, Labroche, &
Bouchon-Meunier, 2012; Zhao, He, Ma, & Shi, 2012). Such a kind
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of active learner is general to many semi-supervised clustering al-
gorithms and is the aim of this paper.

Must-links and cannot-links are the side information to learn
in this study. These two kinds of pairwise constraint are defined as
that two samples with a must-link should be clustered together,
whereas two samples having a cannot-link cannot be in the same
cluster. It is also assumed that themust-link defines an equivalence
relation among samples. Besides, if samples xi and xj have a must-
link, and samples xj and xk have a cannot-link, then xi and xk have
an implicit cannot-link as well. Thus, must-links are related to
the interior structures of clusters, and cannot-links are about the
exterior configurations among clusters.

In Hong and Kwong (2009), it turns out that semi-supervised
clustering resultsmay be sensitive to the assignment order of sam-
ples. In Basu, Banerjee et al. (2004), to ease semi-supervised clus-
tering, the learned pairwise constraints are structured such that
the learned samples belonging to the same cluster are connected
together through the learned must-links and known as the clus-
ter skeleton. In Greene and Cunningham (2007) and Mallapragada
et al. (2008), the learned pairwise constraints are organized in
similar manners. However, the three aforementioned active learn-
ers have two weaknesses. First, the learned pairwise constraints
may bias against some sample subspaces. This is due to select-
ing queries without considering their importance to the explo-
ration of the sample space. Second, since selecting queries based on
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random-sampling strategies or the sampling strategies always
preferring samples far from learned samples, they may learn lit-
tle about the interior of clusters when a large number of clusters
are present. This fact can be seen by considering that if there are c
clusters and every cluster has an equal number n0 of samples, the
probability of two randomly chosen samples belonging to differ-
ent clusters is n2

0

 c
2


/
 cn0

2


, which is equal to c−1

c−1/n0
and at least

c−1
c −→c→∞

1. In addition, samples in different clusters are likely to
have long distances between them. Hence, the learned pairwise
constraints may be seriously slanted towards cannot-links when
c is large.

The proposed approach is also based on the active learning
scheme (Basu, Banerjee et al., 2004) for learning structured pair-
wise constraints. Our approach also exploits the three assumptions
for semi-supervised learning, namely, the cluster assumption, the
smoothness assumption, and the manifold assumption (Chapelle,
Schölkopf, & Zien, 2006). Our active learner has three steps: sam-
ple assessment, then cluster exploration, and finally inferredmust-
link generation.
(1) Sample assessment: This step assigns lower query priority to

samples unlikely to be in the cluster skeleton. To this end, a
kernel version of locally linear embedding (LLE) (Roweis & Saul,
2000) is applied for manifold learning. A new technique called
locally linear propagation reconstruction (LLPR) is proposed
to determine the importance of a sample to the kernel LLPR
of others. The sample neither on a flat patch in the learned
manifold nor important to the kernel LLPR of others gets lower
priority.

(2) Cluster exploration: This step explores the clusters by inquiring
the relationship between informative query samples and the
learned cluster skeletons. The informative query sample is
selected by considering its contribution to the space coverage
of the learned cluster skeletons, and the estimated number of
queries needed to identify the cluster skeleton of the query
sample.

(3) Inferred must-link generation: This step expands the learned
cluster skeletons through inferred must-links to facilitate
semi-supervised clustering. Inferred must-links are yielded
based on the three assumptions of semi-supervised learning,
and constituted by the samples on flat patches in the learned
manifold.
The contributions of this paper are as follows.
• A novel technique based on kernel LLE and kernel LLPR is

proposed to determine the query priority of samples. Sam-
ples important to local manifold structures are assigned higher
priority.
• A novel criterion for query sample selection is proposed. This

criterion is in terms of the importance of a sample to expand
the space coverage of the cluster skeletons and the number of
queries needed to identify the cluster skeleton of the sample.
• Inferred must-links are proposed. Through inferred must-links,

information about some flat patches in the learnedmanifold can
be passed to semi-supervised clustering algorithms.
• Two strategies are proposed to attenuate the deficiency of the

active learners (Basu, Banerjee et al., 2004; Greene & Cunning-
ham, 2007;Mallapragada et al., 2008) in the case that there exist
many clusters. One is considering the number of queries needed
to identify the cluster skeleton of a sample in query sample se-
lection. The other is querying samples in regionswhere samples
are difficult to cluster first.
The remaining part of this paper is organized as follows.

Section 2 introduces relatedwork. Section 3 presents the proposed
LLPR for identifying samples unimportant to cluster structures.
Section 4 presents the proposed active learner. Section 5 presents
a method of assessing samples for the case that there are many
clusters. Section 6 presents the experimental result. Concluding
remarks are drawn in the last section.

2. Related work

Side information for semi-supervised clustering may be used
for instance-level and space-level implications as Chang and Chen
(2012), Grira et al. (2004), Ruiz, Spiliopoulou, and Menasalvas
(2010) and references therein show. Instance-level implications
may be used to initialize cluster centers, and to guide the clustering
process. Space-level implications are applied to induce better
distancemetrics. Learned pairwise constraints should be useful for
both kinds of implication.

In Basu, Banerjee et al. (2004), pairwise constraints are learned
by two steps. The first step, known as the exploration step, learns a
cluster skeleton for every cluster based on a farthest-first traversal
scheme. The second step, known as the consolidation step,
consolidates the learned cluster skeletons by learning randomly
selected samples. In Mallapragada et al. (2008), the query sample
is selected by a min–max criterion, and this algorithm is similar to
the exploration step in Basu, Banerjee et al. (2004).

In Greene and Cunningham (2007), ensemble clustering is
used to obtain the co-association between samples. Then, cluster
skeletons are learned from the representatives of the samples
having high co-association. After that, the most uncertain samples
are learned to expand the learned cluster skeletons.

In Zhao et al. (2012), based on the concept of the DBSCAN
algorithm, samples in the high-density region and samples in the
low-density region are referred to as the core samples and the
boundary samples, respectively. Then, queries about a core sample
and the learned cluster skeletons are followed by two queries
regarding the core sample and the nearest and farthest boundary
samples of the core sample.

In Vu et al. (2012), a utility measure, known as the ASC score,
is defined to measure the potential for two samples being in
different clusters. Samples sharing many nearest neighbors are
linked to form connected components. Then, pairs of samples in
different connected componentswith no cannot-links are inquired
in descending order of the ASC score. In Motta, de Andrade Lopes,
anddeOliveira (2009), network centralitymeasures have also been
used to define query order of samples.

In Voevodski et al. (2012), by inquiring one-versus-all queries,
accurate clustering results are produced for data sets with
unknown metrics. Since not knowing metrics, this work is out of
the scope of this study.

The previous studies give us two important insights into active
learning for semi-supervised clustering: (1) learning well struc-
tured pairwise constraints (Basu, Banerjee et al., 2004; Greene &
Cunningham, 2007; Mallapragada et al., 2008) to facilitate semi-
supervised clustering; and (2) treating the representative and the
uncertain sample differently to ensure that cluster skeletons in-
clude representative samples (Greene & Cunningham, 2007; Zhao
et al., 2012). However, since gauging the informativeness of a sam-
ple only in terms of the distance, the co-association, the number
of shared k-nearest neighbors, or the k-neighbor graph, the afore-
mentioned approaches define the importance of samples without
considering the space configuration of samples. By using manifold
learning, a more specific method is therefore developed in the se-
quent section.

3. Important sample selection based on locally linear propaga-
tion reconstruction

3.1. Locally linear propagation reconstruction

Locally linear embedding (LLE) (Roweis & Saul, 2000) is a
popular approach of manifold learning. LLE assumes that data lie
on a manifold which can be locally linearly approximated. Denote
by Nk(xi) the k-neighbor set of xi, in which for every sample x in
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