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a b s t r a c t

When the neural element number n of neural networks is larger than the sample size m, the overfitting
problem arises since there are more parameters than actual data (more variable than constraints). In or-
der to overcome the overfitting problem, we propose to reduce the number of neural elements by using
compressed projection A which does not need to satisfy the condition of Restricted Isometric Property
(RIP). By applying probability inequalities and approximation properties of the feedforward neural net-
works (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain
instead of the original domain reduces the sample error at the price of an increased (but controlled) ap-
proximation error, where the covering number theory is used to estimate the excess error, and an upper
bound of the excess error is given.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In machine learning, feedforward neural networks (FNNs) and
radial basis function networks (RBFNs) are usually considered as a
hypothesis space for the study of the convergence performance of
learning algorithms. For example, Barron (1993) gave the conver-
gence rate of least square regression learning algorithm by using
the approximation property of FNNs. RBFNs have become one of
the most popular feedforward neural networks with applications
in regression, classification and function approximation problems
(see Bishop, 1997, Chen, Cowan, & Grant, 1991 and Haykin, 1994).

In 2006, Hamers and Kohler (2006) obtained the non-
asymptotic bounds on the least square regression estimates by
minimizing the empirical risk over suitable set of FNNs. Recently,
Kohler and Mehnert (2011) presented an analysis on the conver-
gence rate of least squares learning algorithms in set of FNNs for
smooth regression function. All these mentioned analysis on re-
gression learning algorithm are based on the assumption that the
sample size m is higher than the neural element number n. How-
ever, in many real situations, m is less than n. It will lead to the
overfitting problem. In other words, many minimizers of the em-
pirical risk exist.

To overcome the overfitting problem, several approaches
have been proposed in the literature. These approaches can be
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categorized as follows:

(1) Regularization. That is, the empirical error is combined with
a penalty term, for examples, ℓ1 norm (see Lasso (Tibshirani,
1994)), ℓ2 norm (see ridge-regression (Tikhonov, 1963)), ℓ1/2
norm (e.g. Xu, Chang, & Xu, 2012), group Lasso (e.g. Mairal,
Jenatton, Obozinski, & Bach, 2010 and Yuan & Lin, 2006) or
overlapping group Lasso (e.g. Yuan, Yin, & Ye, 2011) and many
others.

(2) Minimizing norm. That is, to find theminimizers of the empir-
ical error with minimal norm (ℓ1 or ℓ2) (e.g. Tsaig & Donoho,
2006). However, the regularization parameter in the regular-
ization termhas not been addressed theoretically. On the other
hand, for large n, finding solutions of minimal norm (for ℓ1 or
ℓ2-norm problem) is numerically expensive.

In the paper, we propose to study the minimizer of the empir-
ical error in the compressed hypothesis space instead of the orig-
inal hypothesis space. That is, we propose to find solutions in the
compressed hypothesis space. In recent years, dimension reduc-
tion and random projections in various learning areas has received
considerable interests. Zhou, Lafferty, andWasserman (2007) pro-
posed to use compressed linear regression, in which the data set Y
is compressed by the multiplication of a matrix A which satisfies
the ‘‘Restricted Isometric Property’’ in a linear regression model
Y = Xβ + ϵ where β is the coefficient and ϵ is noise. For the pur-
pose of classification, Calderbank, Jafarpour, and Schapire (2010)
studied an SVM algorithm in a compressed space and showed that
their algorithm has good generalization properties. They also gave
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some analysis on the Lasso estimator which built in these com-
pressed data.

Davenport, Wakin, and Baraniuk (2006) discussed how com-
pressed measurements may be useful to solve many detection,
classification and estimation problems without having to recon-
struct the signal. Interestingly, they made no assumption about
the signal being sparse. Blum (2006) and Rahimi and Recht (2007)
showed how to map a kernel k(x, y) = Φ(x) × Φ(y) into a low-
dimensional space, while they still approximately preserved the
inner products. Maillard and Munos (2009) studied the com-
pressed least squares regression and gave the upper bound of
the excess risk, using compressed projections. Motivated by those
mentioned jobs, we aim to study the regression estimate in neural
networks by the approximation property of neural networks and
compressed projection in the paper.

The main contributions of the paper include that (1) we prove
that the FNNs regression learning algorithm in the compressed
domain reduces the sample error but at the price of an increased
(but controlled) approximation error; (2) we give an estimation
on the excess error and an upper bound of the excess error for
the first time in literature for the compressed neural network
regression. The new results provide a profound understanding
of the overfitting problem and a mathematical estimation on
the accuracy that the compressed neural network regression can
reach. Moreover, the analysis applied in this paper also provides
a mathematical framework for analysing the error bounds in the
new network model, which has been studied little.

The rest of the paper is organized as follows. In Section 2,
we present a brief introduction of regression learning and neural
networks. In Section 3, we give the compressed projection of
regression learning algorithm and give the convergence rate of the
compressed regression learning algorithm. Section 4 concludes the
paper.

2. Preliminaries on neural networks and regression learning

In the paper, we use FNNs set as the hypothesis space. That is,
FNNswith one hidden layer and n hidden neurons. These FNNs can
be formulated as a real-valued function on Rd of the form

N(x) =

n
j=1

cjσ

αT
j x + βj


,

where σ : R → [0, 1] is called a sigmoidal function and αj ∈

Rd, βj, cj ∈ R (j = 1, 2, . . . , n) are the parameters that determine
the neural networks.

Let φj : Rd
→ R (j = 0, 1, . . . , n) be a family of real functions,

then we define

N(x) =

n
j=1

cjφj(x), cj ∈ R,

and

N d
n,φ =


N(x) : N(x) =

n
j=1

cjφj(x), cj ∈ R


.

Clearly,N(x) can be understood as amodel of FNNs. In form, it looks
quite similar to RBFNs (see Leonardis & Bischof, 1998 and Musavi,
Ahmed, Chan, Farms, & Hummels, 1992).

Neural computation research has developed powerful meth-
ods for approximating continuous or integrable functions on com-
pact subsets ofRd since 1980s.Most approximation schemes using
FNNs and RBFNs have been studied (e.g. Cybenko, 1989, Funahashi,
1989 and Musavi et al., 1992). In such schemes, function approxi-
mation capabilities critically depend on the activation function na-
ture of the hidden layer.

In the following, we introduce a class of activation function
φj : Rd

→ R, defined by

φj(x) = φj(x, B) =
e−Bρ(x,aj)

n
i=1

e−Bρ(x,ai)
, j = 1, 2, . . . , n,

where a1, . . . , an are the data in Rd, ρ(a, b) denotes the Euclidean
distance between two points a and b in Rd, and B > 0 is a param-
eter. Furthermore, we define the linear combination of φj(x, B) as

N(x) =

n
j=1

cjφj(x, B).

Obviously,N(x) can be understood to be a FNNwith four layers:
the first layer is the input layer, the input is x ∈ Rd; the second
layer is the processing layer for computing values ρ(x, aj) (j =

0, 1, . . . , n), between the input x and the prototypical input points
aj, and it is the input of the third layer that contains n+1 neurons;
φj(x, B) is an activation function of the jth neuron; the fourth layer
is the output layer, and the output is N(x).

It is well known that the sigmoidal function σ(x) =
1

1+e−x is a
logistic model. This model is important and has been widely used
in biology, demography and so on (see Brauer & Castillo-Chavez,
2001 and Hritonenko & Yatsenko, 2006). Naturally, the functions

φj(x) =
e−Bρ(x,aj)

n
i=1

e−Bρ(x,ai)
, j = 1, 2, . . . , n

can be regarded as a multi-class generalization of the logistic
model (see Section 10.6 in Hastie, Tibshirani, & Friedman, 2001),
which was also used in a regression model for the case of multi-
class in the classification problems. Although the functions φj(x)
are not sigmoidal, they possess some properties that common
sigmoidal functions do not have, for example

0 < φj(x) ≤ 1, j = 1, 2, . . . , n,
n

j=1

φj(x) = 1.

On the other hand, it follows from their structures that φj(x)
contain the information of the interpolation samples. The second
layer of the network composed of φj(x) can be regarded as the
processing layer and the input of the third layer, which is more
convenient for the study of network interpolations. Motivated by
those properties ofφj(x), we introduce functionsφj(x) as activation
functions in the hidden layer of networks. In Cao, Zhang, and He
(2009), we studied the convergence rate of neural networks N(x)
approximating continuous function by continuous modulus.

Let (X, d) be a compact metric space, Y = R and ρ be a prob-
ability distribution on Z = X × Y . Denote by z = {zi}mi=1 =

{(xi, yi)}mi=1 ∈ Zm a set of random samples, which are indepen-
dently drawn according to ρ. Let ρX , ρ(y|x) be margin probability
measure and condition probability measure of ρ respectively. In
the paper, we define the set Fm,n as the hypothesis space accord-
ing to the neural networks N(x):

Fm,n =


N(x) =

n
j=1

cjφj(x) : cj ∈ R,

n
j=1

|cj| ≤ M lnm


,

where M is a positive number.
Since every φj is bounded in absolute value by 1, the functions

in Fm,n are bounded in absolute value by M lnm. For f ∈ Fm,n, we
define the empirical square error

Ez(f ) =
1
m

m
i=1

(f (xi) − yi)2
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