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a b s t r a c t

This paper presents a global and local finite-time synchronization control law for memristor neural net-
works. By utilizing the drive–response concept, differential inclusions theory, and Lyapunov functional
method, we establish several sufficient conditions for finite-time synchronization between the master
and corresponding slave memristor-based neural network with the designed controller. In comparison
with the existing results, the proposed stability conditions are new, and the obtained results extend some
previous works on conventional recurrent neural networks. Two numerical examples are provided to il-
lustrate the effective of the design method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The first memristor (as a contraction of memory and resistor)
was originally theorized by Dr. Chua in 1971 (Chua, 1971). He
reasoned that, besides the resistor, capacitor and inductor, there
should be the fourth circuit element which is now called themem-
ristor (contraction of memory resistor). Although he showed that
such an element has many interesting and valuable features, no
much attention was paid to his theory because no one could ever
build one until nearly 40 years later. In 2008, a group of scien-
tists from Hewlett–Packard Laboratory announced that they had
build a prototype of the memristor (Strukov, Snider, Stewart, &
Williams, 2008; Williams, 2008). This new circuit element shares
many properties of resistors and shares the same unit of measure-
ment (i.e., ohm). Because of its potential applications in next gen-
eration computer and powerful brain-like neural computer, it also
has generated unprecedented worldwide interest (see Bao & Zeng,
2013; Chua, 1971; Corinto, Ascoli, & Gilli, 2011; Itoh & Chua, 2008;
Strukov et al., 2008; Wu, Wen, & Zeng, 2012; Wu, Zeng, Zhu, &
Zhang, 2011; Wu, Zhang, & Zeng, 2011; Zhang, Shen, & Sun, 2012).

As far as we know, the neural networks are very important
nonlinear circuit networks because of their wide applications in
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combinatorial optimization, pattern recognition, signal processing
and so on, for reference, see Cao, Huang, and Qu (2005), Cao and
Wang (2005), Cao, Yuan, and Li (2006), Chen, Cao, and Huang
(2002), Hu and Wang (2002), Huang and Cao (2003), Huang, Cao,
and Wang (2002), Jiang and Cao (2006), Long and Xu (2011), Shen
andWang (2008), Song (2008),Wu (2009), Zeng, Huang, andWang
(2005), Zeng and Wang (2006), Zeng, Wang, and Liao (2005) and
Zhu and Cao (2011). In Refs., Bao and Zeng (2013),Wu et al. (2012),
Wu, Zeng et al. (2011), Wu, Zhang et al. (2011) and Zhang et al.
(2012) have studied a new model by using memristor instead of
resistors where the connection weights change according to its
state, i.e., a state-dependent switching recurrent neural networks.
Such applications depend on the stability of networks. Therefore,
stability is one main property of networks. According to the work
in Cao et al. (2005), Cao and Wang (2005), Cao et al. (2006), Hu
andWang (2002), Huang and Cao (2003), Huang et al. (2002), Shen
and Wang (2008), Zeng and Wang (2006) and Zhang et al. (2012),
a great many results have been reported about the asymptotical
and exponential stability of recurrent neural networks. However,
for the purpose of control and supervision, a finite time stability
of the error system is often desired, particularly in engineering
fields (Shen & Huang, 2009). In general, an asymptotically
or exponentially synchronization with the controller cannot
guarantee that the system under study achieves the control
performance of fast convergence (Wu, Zeng et al., 2011), while a
finite-time synchronization with the controller possesses such a
property which means the optimality in convergence time. And
thus far, there are few published papers considering finite-time
synchronization of memristor-based neural networks. Therefore,
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considering the actual needs, it is essential to study the finite-time
synchronization of memristor-based neural networks.

Different from the previous works (Wu et al., 2012; Wu, Zeng
et al., 2011; Zhang et al., 2012), in this paper, we will mainly
deal with the problem of finite-time synchronization for a class of
memristor-based recurrent neural networks as follows:

ẋi(t) = −xi(t)+

n
j=1

aij(xi(t))gj(xj(t))+ Ii,

t ≥ 0, i = 1, 2, . . . , n, (1.1)

where

aij(xi(t)) =


âij, |xi(t)| ≤ Ti,
ǎij, |xi(t)| > Ti,

(1.2)

in which switching jumps Ti > 0, âij, ǎij, i, j = 1, 2, . . . , n, are all
constant numbers, gj(·) : ℜ → ℜ, j = 1, 2, . . . , n is continuous
function, Ii denotes external bounded input.

Remark 1. The authors in Wu et al. (2012) and Wu, Zeng et al.
(2011) have given a clear exposition about the relation between
memristances and the coefficients of switching system (1.1), so
researchers can consult (Wu et al., 2012; Wu, Zeng et al., 2011) to
get more explanation.

The organization of this paper is as follows. Some preliminaries
are introduced in Section 2. Themain results are given in Section 3.
And then, numerical simulations are given to demonstrate the
effectiveness of the proposed approach in Section 4. Finally, this
paper ends by a conclusion.

2. Model description and preliminaries

In this paper, for convenience, some notations are introduced:
Throughout this paper, solutions of all the systems consid-

ered in the following are intended in Filippov’s sense (see Fil-
ippov, 1988). [·, ·] represents the interval. We define ∥v∥ =

[
n

i=1 v
2
i ]

1
2 , for ∀v = (v1(s), v2(s), . . . , vn(s))T ∈ ℜ

n. For ma-
trices A ∈ ℜ

n×m, AT denotes its transpose, λmax(P), λmin(P) re-
spectively represents the maximum and minimum eigenvalue of
matrix P , and ∥Q∥ denotes the operator norm of matrix Q, i.e.,
∥Q∥ = [λmaxQ

TQ]
1
2 . Let āij = max{âij, ǎij}, aij = min{âij, ǎij}, for

i, j = 1, 2, . . . , n. For matrix M = (mij)n×n,H = (hij)n×n,M ≫

H(M ≪ H) means that mij ≥ hij(mij ≤ hij), for i, j = 1, 2, . . . , n.
And by the interval matrix [M,H], it follows that M ≪ H . For
∀L = (lij)n×n ∈ [M,H], it means M ≪ L ≪ H , i.e., mij ≤ lij ≤ hij
for i, j = 1, 2, . . . , n.

In addition, the initial conditions of system (1.1) are given by
x(s) = ψ(s) = (ψ1(s), ψ2(s), . . . , ψn(s))T ∈ ℜ

n.
First, by the theory of differential inclusions, from system (1.1),

we have

ẋi(t) ∈ −xi(t)+

n
j=1

[aij, āij]gj(xj(t))+ Ii,

t ≥ 0, i = 1, 2, . . . , n, (2.1)

or equivalently, for i, j = 1, 2, . . . , n, there exist aij ∈ [aij, āij], such
that

ẋi(t) = −xi(t)+

n
j=1

aijgj(xj(t))+ Ii,

t ≥ 0, i = 1, 2, . . . , n. (2.2)

Consider system (2.2) as themaster systemand the correspond-
ing slave system as:

ẏi(t) = −yi(t)+

n
j=1

aijgj(yj(t))+ Ii + ui(t),

t ≥ 0, i = 1, 2, . . . , n, (2.3)
where the initial conditions y(s) = ϕ(s) = (ϕ1(s), ϕ2(s), . . . ,
ϕn(s))T ∈ ℜ

n, and ui(t) (i = 1, 2, . . . , n) is the appropriate control
input that will be designed in order to obtain a certain control
effectiveness. The initial conditions associated with system (2.2)
are of the form yi(t) = ψi(t) ∈ ℜ, i = 1, 2, . . . , n.

Referring to some relevant works in Wu et al. (2012) and Wu,
Zeng et al. (2011), we make the following Assumptions (A1) and
(A2):
(A1) The functions gi, i = 1, 2, . . . , n are bounded and satisfy the

Lipschitz condition with a Lipschitz constant Li > 0, i.e.,

|gi(x)− gi(y)| ≤ Li|x − y| for all x, y ∈ ℜ.

(A2) For i, j = 1, 2, . . . , n,

[aij, āij]gj(xj(t))− [aij, āij]gj(yj(t))

⊆ [aij, āij](gj(xj(t))− gj(yj(t))). (2.4)

Let e(t) = (e1(t), e2(t), . . . , en(t))T be the synchronization
error,where ei(t) = yi(t)−xi(t), and fj(ej(t)) = gj(xj(t))−gj(yj(t)).

Under the Assumptions (A1) and (A2), applying Lemma 3.1 in
Guo and Huang (2009), we know that the each solution x(t) of
the system (2.2) with the initial condition exists on the interval
[0,+∞).

Supposed that the Assumption 2 is satisfied, applying the theo-
ries of set-valued maps and differential inclusions, we can get the
synchronization error differential inclusions as

ėi(t) ∈ −ei(t)+

n
j=1

[aij, āij]fj(ej(t))+ ui(t),

t ≥ 0, i = 1, 2, . . . , n, (2.5)
or equivalently, for i, j = 1, 2, . . . , n, there exist a∗

ij ∈ [aij, āij], such
that

ėi(t) = −ei(t)+

n
j=1

a∗

ijfj(ej(t))+ ui(t),

t ≥ 0, i = 1, 2, . . . , n, (2.6)
with initial conditionsφi(t) = ψi(t)−ϕi(t), i = 1, 2, . . . , n, where
fj(ej(t)) = gj(yj(t))− gj(xj(t)), i, j = 1, 2, . . . , n.

Obviously, fj(0) = 0, j = 1, 2, . . . , n. The controllers ui, i =

1, 2, . . . , n are designed to stabilize the zero solution of the system
(2.6) with initial condition in finite time.

Definition 1. The zero solution of the system (2.6) is said to be
finite-time stable (on an open neighborhood U ⊂ D of the ori-
gin) if:
(1) there exists a function T : U \ {0} → (0,∞), such that ∀e0 ∈

U, the solution ψ(t, e0) of the system (2.6) is defined and
ψ(t, e0) ∈ U \ {0} for t ∈ [0, T (e0)) and limt→T (e0) ψ(t, e0) =

0, then, T (e0) is called the settling time.
(2) for all ϵ > 0, there exists δ(ϵ) > 0 such that for every e0 ∈

(B∥·∥2,n(δ(ϵ) \ {0}))


U, e(t, e0) ∈ B∥·∥2,n(ϵ) for all t ∈

[0, T (e0)).
When U = D = ℜ

n, the zero solution is said to be globally
finite-time stable. Furthermore, if only (1) is fulfilled then the ori-
gin of system (2.6) is said to be finite-time attractive.

In order to prove that the error dynamic system (2.6) can be
guaranteed to converge to the equilibrium points in finite time,
some lemmas should be given firstly as follows:

Lemma 1 (Yang & Cao, 2010). Assume that a continuous, positive-
definite function V : D → ℜ

+, real numbers α > 0, 0 < η < 1 and
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