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a b s t r a c t

In this paper we study the dynamical behavior of neural networks such that their interconnections are
the incidence matrix of an undirected finite graph G = (V , E) (i.e., the weights belong to {0, 1}). The
network may be updated synchronously (every node is updated at the same time), sequentially (nodes
are updated one by one in a prescribed order) or in a block-sequential way (a mixture of the previous
schemes). We characterize completely the attractors (fixed points or cycles). More precisely, we establish
the convergence to fixed points related to a parameter α(G), taking into account the number of loops,
edges, vertices as well as the minimum number of edges to remove from E in order to obtain a maximum
bipartite graph. Roughly, α(G′) < 0 for any G′ subgraph of G implies the convergence to fixed points.
Otherwise, cycles appear. Actually, for very simple networks (majority functions updated in a block-
sequential scheme such that each block is of minimum cardinality two) we exhibit cycles with non-
polynomial periods.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Symmetric neural networks were first studied in the con-
text of the majority functions and generalizations in Goles and
Olivos (1980) as well as the application to associative memories in
Hopfield (1982). The network’s dynamics on undirected graphs
have been widely studied to model situations in physics, biology,
sociology, as wewill review later on. This model has been included
as an important case of neural networks for associative memories
(Hopfield networks), percolation problems, infection, segregation,
and other social problems, therefore, there exists now a vast com-
munity interested both in theoretical results aswell as applications
of symmetric neural networks.

The principal updating modes considered in these networks
are the parallel, the asynchronous, and the sequential one. For
the parallel updating scheme it was proved that any symmet-
ric neural network converges only to fixed points or two cycles
(Goles & Olivos, 1980). The fixed point convergence for symmet-
ric networks, with non negative loops, updated sequentially was
proved in Goles (1982). The unique general result about arbi-
trary block-sequential updates was established in Goles-Chacc,
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Fogelman-Soulie, and Pellegrin (1985). Convergence results and
generalizations can be seen in Goles and Martínez (1990), where
the class of Heaviside functions is extended to the positive or
cyclically-monotone functions. A general approach of an energy
operator for this kind of networks can be seen in Goles (2003) and
Goles and Martínez (1990). Further, in Cosnard and Goles (1997) a
characterization of networks which admits an energy operator is
done (roughly speaking energy operators are associated to quasi-
symmetric matrices). The first studies related to different updat-
ing schemes appeared in the context of Boolean networks for the
parallel and sequential updating schemes (Robert, 1986). More re-
cently, such studies have been developed in Aracena, Goles, Mor-
eira, and Salinas (2009) and Montalva (2011) where equivalent
dynamics classes were established for different block-sequential
updating schemes over Boolean networks. In Noual (2012) some
theoretical results as well as biological considerations related with
different updating schemes were developed. More recently, net-
works driven by Heaviside local functions have been used in sta-
tistical physics and social dynamics, like voter models (Castellano,
Fortunato, & Loretto, 2009) and the Schelling’s segregation dynam-
ics (Goles-Domic, Goles, & Rica, 2011). In biology, applications have
been developed in the framework of regulatory networks. In this
context, a general overview about the application of Boolean net-
works can be seen in Bornholdt (2008). More concerned with this
paper, Heaviside functions have been used to model the yeast cell
cycle (Davidich & Bornholdt, 2008; Li, Long, Lu, Ouyang, & Tang,
2004). From these works we characterized the network’s dynam-
ics under every deterministic updating scheme (Goles, Montalva,
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& Ruz, 2013). In a similar way, the complete deterministic dy-
namic for the mammalian cell cycle network has been analyzed
in Ruz, Goles, Montalva, and Fogel (2014). Further, for the specific
threshold class of disjunctive networks, the dynamical behavior
was characterized for arbitrary directed graphs (non necessarily
symmetric) and defined complexity classes related with the ob-
tained attractors (fixed points or cycles) (Goles & Noual, 2012). The
relationship between the positive and negative circuits of the con-
nection graph and the fixed points of discrete neural networks is
studied in Aracena, Demongeot, and Goles (2004), obtaining nec-
essary and sufficient conditions for the existence of fixed points in
discrete neural networks. Recently, it has been studied and char-
acterized some decision problems related with whether or not an
arbitrary vertex of a network may change its state (from 0 to 1) for
the majority networks (a particular case of a Heaviside function)
under different updates (Goles & Montealegre-Barba, in press-a;
Goles, Montealegre-Barba, & Todinca, 2013). In relation to applica-
tions using Hopfield networks, Maetschke and Ragan (2014) con-
structed Hopfield networks from cancer expression data and then
used them to show that the resulting attractors correspond to can-
cer subtypes. The effect of removing the links of fully connected
Hopfield networks and then analyzing the convergence to a desig-
nated attractor is presented in Anafi and Bates (2010). The results
from that study were used to speculate about human diseases and
how they may represent biological networks that converge to an
abnormal attractor. In the context of machine learning, it has been
shown that restricted Boltzmannmachines, typically for classifica-
tion and feature detection, are thermodynamically equivalent to a
Hopfield network (Barra, Bernacchia, Santucci, & Contucci, 2012). A
Hopfield neural network in Pajares, Guijarro, and Ribeiro (2010) is
used to combine simple classifiers for classifying natural textures
in images.

In this work we focus on networks such that their intercon-
nections correspond to the incidence matrix of a finite undirected
graph G = (V , E), i.e., thematrix’s entries,wij, are 0’s or 1’s accord-
ing to whether the edge (j, i) ∈ E. In this context, we characterize
completely, for any updating scheme, the attractors of such net-
works.

The paper is organized as follows. Section 2 gives some defi-
nitions as well as theorems that will be useful throughout the pa-
per. In Section 3we introduce a parameter depending on the graph
structure, α(G), such that the parallel updating scheme converges
to fixed points if and only if α(G′) < 0 for any subgraph G′ of G.
Otherwise, cycles appear. In particular we prove that it is enough
to have in the graph two connected vertices without loops in or-
der to find a subgraph G′ such that α(G′) ≥ 0 or, equivalently to
have a two-cycle. Further, we characterize completely the attrac-
tor’s behavior for some classes of graphs like, forest, trees, bipartite
and complete graphs with or without loops. We extend the pre-
vious result to any updating scheme over the network by consid-
ering for the analysis the subgraphs associated to each partition
of the updating scheme. In this context we get as corollaries some
convergence results for block-sequential updating schemes, taking
into account the cardinality of each block. Roughly, by assuming
diag(G) = 1⃗, we conclude that for partitions of size 3 the dynamics
converge to fixed points. We also obtain a slightly similar conver-
gence result by considering also partitions of size 4 and 5, where
some specific subgraphs are forbidden.

In Section 4 we proved that there exist very simple block-
sequential schemes (every partition composed of two connected
vertices without loops) under majority local functions such that
cycleswith non-polynomial periods appear. The same construction
allows to establish a similar non-polynomial behavior for the
transient time. Comments on the range of the energy operator
and how it relates to directed graphs as well as an example that
illustrates the theorems developed in this paper are presented in
Section 5. Finally, in Section 6, we present the general conclusions
as well as some comments related to the complexity of the
computation of the parameter α(G).

2. Background

Let us consider an integer n × n symmetric matrix W = (wij),
x ∈ {0, 1}n, a threshold vector Θ ∈ Z and the set of n Heaviside
functions:

fi(x1, . . . , xn) = H


n

j=1

wijxj − θi


i ∈ {1, . . . , n} (1)

where

H(u) =

1 if u ≥ 0
0 if u < 0.

Since the entries are integers, it is always possible to determine
equivalent functions with thresholds θi = pi + 1/2, pi ∈ Z,
such that |


wijxj − θi| ≥ 1/2, ∀x ∈ {0, 1}n, ∀i = 1 . . . n.

We associate a dynamic to the previous functions by considering
a partition {{I1}, . . . , {Ip}} of the set V = {1, . . . , n} such that the
nodes of the network are updated one by one following the par-
tition’s order. So, when Il is updated; we consider the new values
of the previous nodes belonging to ∪j≤l−1 Ij and the old values for
the nodes in ∪j≥l Ij. We call this procedure the block-sequential
update. As two important particular updates we have the paral-
lel (or synchronous) update, when I1 = {1, . . . , n} is the unique
block, i.e., every node is updated at the same time.When the nodes
are iterated one by one in a prescribed order given by a partition
{{σi}}

n
i=1, where σ = (σ1 . . . σn) is a permutation of the set of

nodes, we have the sequential update. Since a partition can be con-
structed for every subset of V , there is an exponential number of
updates.

We define a neural network as a triple N = (W , Θ, τ ) where
W is an integer symmetric matrix, Θ the threshold vector and
τ the updating scheme. It was proved in Goles (1982) and Goles
and Olivos (1980) that the parallel update on symmetric neural
networks always converges to bounded limit cycles, more pre-
cisely, fixed points or cycles with period 2. It was established also
a related convergence result for the sequential updating scheme
(Goles, 1982). The most general result about block-sequential up-
dates and fixed point behavior is Theorem 2.1. We will sketch its
proof in order to introduce an energy functional that will be useful
in the paper.

Theorem 2.1 (Goles-Chacc et al., 1985). Let us consider the block-
sequential updating scheme τ = {{I1}, . . . , {Ip}} and the symmetric
neural network N = (W , Θ, τ ). Let W (Ik) be the sub-matrix
associated to the block Ik of the partition. Then, if for every k ∈
{1, . . . , p}, W (Ik) is non-negative definite, then the network admits
only fixed points.

Proof. Let us introduce the following operator:

E(x) = −
1
2

n
i=1

xi
n

j=1

wijxj +
n

i=1

θixi. (2)

Let us consider that we update the kth block from the config-
urations x = (x1, . . . , xn), hence x′i = xi ∀i ∉ Ik and x′i =
H(
n

j=1 wijxj − θi) ∀i ∈ Ik. SinceW is symmetric:

1E = E(x′)− E(x) = −

i∈Ik

(x′i − xi)


n

j=1

wijxj − θi



−
1
2


i∈Ik

(x′i − xi)

j∈Ik

wij(x′j − xj) (3)

therefore,

1E =

i∈Ik

δi −
1
2
ytW (Ik)y (4)
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