
Neural Networks 63 (2015) 223–233

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Convergence and attractivity of memristor-based cellular neural
networks with time delays✩

Sitian Qin a,b, Jun Wang c,a,∗, Xiaoping Xue d

a School of Control Science and Engineering, Dalian University of Technology, Dalian 116023, China
b Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai, 264209, China
c Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
d Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

a r t i c l e i n f o

Article history:
Received 24 July 2014
Received in revised form 28 October 2014
Accepted 3 December 2014
Available online 18 December 2014

Keywords:
Memristor
Cellular neural networks
Finite-time convergence
Positive invariance
Attractivity

a b s t r a c t

This paper presents theoretical results on the convergence and attractivity of memristor-based cellular
neural networks (MCNNs) with time delays. Based on a realistic memristor model, an MCNN is modeled
using a differential inclusion. The essential boundedness of its global solutions is proven. The state of MC-
NNs is further proven to be convergent to a critical-point set located in saturated region of the activation
function, when the initial state locates in a saturated region. It is shown that the state convergence time
period is finite and can be quantitatively estimated using given parameters. Furthermore, the positive
invariance and attractivity of state in non-saturated regions are also proven. The simulation results of
several numerical examples are provided to substantiate the results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It was over three decades ago that Chua physically conceived
the existence and mathematically analyzed the properties of a
brand-new two-terminal circuit element called the memristor
coined as a contraction of memory and resistor (see Chua, 1971).
Chua believed that memristor has every right to be the fourth pas-
sive circuit element along with the three classical ones (i.e., the re-
sistor, inductor, and capacitor) already in existence for centuries.
Unlike other two-terminal devices, the value of memristor
(i.e., memristance) does not depend on the instantaneous inputs
alone, but depends on how signals are applied over time and hence
they exhibit memory effects. For example, when the voltage is
turned off, the memristor remembers its most recent value until
next time when it is turned on. Although the memristor was ex-
tensively investigated in academia in the 1970s, its physical device
was not discovered until 37 years later. In 2008, Williams and his
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group at Hewlett–Packard Laboratories in Strukov, Snider, Stew-
art, and Williams (2008) announced that they built a solid-state
memristor,whichwasmodeled as a thin semiconductor film (TiO2)
sandwiched between two metal contacts. After it, the memristor
becamemore popular ever since due to its unprecedented behavior
and potential applications in next generation computers and pow-
erful brain-like neural computers (see Chua, 2011, Fouda & Rad-
wan, 2013, Kim, Sah, Yang, Roska, & Chua, 2012, Lu, 2012, Itoh &
Chua, 2009, Talukdar, Radwan, & Salama, 2012, Thomas, 2013).

A memristor works like a biological synapse, with its memris-
tance varyingwith experience, orwith the current flowing through
it over time (see, for instance, Anthes, 2011). This special behavior
can be used in artificial neural networks, such as pattern recogni-
tion or signal processing from sensor arrays, in a way that mimics
the human brain (see Anthes, 2011). The cellular neural networks
(CNNs), introduced by Chua and Yang in Chua and Yang (1988a,
1988b), are nonlinear dynamic circuits consisting ofmany process-
ing units called cells in two-dimensional array. Besides their di-
versified applications for signal processing, images processing, and
pattern recognition, the dynamic behaviors of CNNs are theoreti-
cally analyzed since last decade (see Cao, Wang, & Liao, 2003, Liao
& Wang, 2003, Lu, Wang, & Chen, 2011, Wang, Lu, & Chen, 2010,
Zeng & Wang, 2006, 2008, 2009, Zeng, Wang, & Liao, 2004). The
inter-neuron connections of conventional CNNs are implemented
by using resistors, which do not have memory function. Compared
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with resistor, memristor is more suitably used as synaptic con-
nections in CNNs and memristor-based cellular neural networks
(MCNNs) would be more powerful. It was shown in Cantley, Sub-
ramaniam, Stiegler, Chapman, and Vogel (2011) and Pershin and
Di Ventra (2010) that MCNNs have great vitality and advantages as
a more efficient approach for further development of neural net-
work implementations.

It is well known that successful applications of recurrent neural
networks (RNNs) rely largely on their dynamical properties, such
as stability, periodic oscillatory, chaos, and bifurcation. In 2010,
based on theory of Filippov (1964), authors in Hu andWang (2010)
spearheaded the dynamic analysis of memristor-based recurrent
neural networks (MRNNs) and studied global uniform asymptotic
stability by constructing proper Lyapunov functional. Since then,
dynamical analyses of MRNNs have received considerable atten-
tion (see Bao & Zeng, 2013, Guo et al. (2013, in press-a,b), Wang
& Shen, 2013, Wen & Zeng, 2012, Wen, Zeng, & Huang, 2012,
2013, Wu & Zeng, 2012, 2013, Wu, Zhang, & Zeng, 2011, Zhang,
Shen, Quan, & Sun, 2012, 2013). In most of the works, the math-
ematical model of MRNNs is expressed as an implicit differential
equation with discontinuous right side. In order to analyze the
class of discontinuous differential equations,mostworks adopt the
theory introduced in Filippov (1964). This theory has become a
standard mathematical tool in MRNNs focus on the stability of
equilibrium (or periodic solution).

In most existing works, the main focus is on the existence of a
unique equilibrium and its stability. However, in practical applica-
tions, the neural network is desired to have many attractors. Neu-
ral networks with multiple attractors are very useful in practice,
such as pattern recognition and associative memory (see Chang,
Kuang, & Shih, 2006, Nie & Cao, 2011, Wang et al., 2010). Recently,
it is shown in Guo, Wang, and Yan (in press-a) that the number of
equilibria of an n-neuronMCNN is up to 22n2+n in contrast to 2n in a
conventional CNN (i.e., 22n2 times more). Hence, it is deemed both
necessary and desirable to study local convergence and attractivity
of MCNNs.

The rest of this paper is structured as follows. In Section 2,
we introduce an MCNN model and some related preliminaries. In
Section 3, we prove the existence and essential boundedness of
global solution of the MCNN model, and then characterize finite-
time convergence and positive invariance of theMCNN in different
regions of its state space. In Section 4,we discuss simulation results
of several numerical examples to substantiate the effectiveness of
the results. Finally, conclusions are made in Section 5.

2. Preliminaries

In this section, a memristor model and an MCNN model are
introduced along with definitions and lemmas.

2.1. Memristor model

Memristor is a two-terminal passive device characterized by a
constitutive relation (i.e., memristance) between two mathemat-
ical variables q and ϕ, representing the time integral of the ele-
ment’s current i(t), and voltage v(t); namely,

q(t) =

 t

−∞

i(τ )dτ ,

ϕ(t) =

 t

−∞

v(τ)dτ .

(1)

More precisely, the memristance M of a memristor can be ex-
pressed as

M =
dϕ
dq

=
v(t)
i(t)

. (2)

Fig. 1. Typical i–v characteristic of memristor: double-valued Lissajous figure of
(v(t), i(t)) for all times t except when it passes through the origin, where the loop
is pinched.

It is easy to find that if voltage v(t) is a linear function of current
i(t), then memristance M is a constant, that is, the memristor de-
generates to a resistor.

Fig. 1 depicts the typical i–v characteristic of thememristor (see
Chua, 2011 for more details), which shows that the memristance
of the device depends on the voltage applied and direction of
current flow. Similar to the piecewise linearmodel in Hu andWang
(2010), Wen et al. (2012) and Wu and Zeng (2012), a simplified
mathematical model of memristance can be defined as follows:

M(v̇(t)) =


M ′, if v̇(t) < 0
M ′′, if v̇(t) > 0
lim
s→t−

M(v̇(s)), if v̇(t) = 0
(3)

where M ′ and M ′′ are known constants relating to memristance,
and lims→t− M(v̇(s)) means that the memristance keeps its previ-
ous value. Obviously, the memristor is a switchable device and its
memristance may be discontinuous.

2.2. Memristor-based CNN

The memristor-based cellular neural network (MCNN) is a cel-
lular neural networkwhose connections are implemented by using
memristors. A mathematical model of the MCNN can be expressed
as follows:

ẋi(t) = −dixi(t) +

n
j=1

aij(fj(xj(t)) − xi(t))fj(xj(t))

+

n
j=1

bij(fj(xj(t − τ)) − xi(t − τ))fj(xj(t − τ)) + ui, (4)

where for i = 1, . . . , n; xi(t) is the state of the ith neuron at time t ,
di denotes the self-inhibition rate of the ith neuron, aij(·) and bij(·)
are respectively the feedback connection weights implemented by
using memristors with and without time delay; ui is the ith exter-
nal input, τ is a time delay, and fi is a linear saturation activation
function defined as

fi(s) =

1, if s > 1
s, if s ∈ [−1, 1]
−1, if s < −1.

(5)

For simplicity, we denote yji as follows:

yji(t) := fj(xj(t)) − xi(t). (6)



Download English Version:

https://daneshyari.com/en/article/403912

Download Persian Version:

https://daneshyari.com/article/403912

Daneshyari.com

https://daneshyari.com/en/article/403912
https://daneshyari.com/article/403912
https://daneshyari.com

