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Feedforward neural networks (FFNN) are among the most used neural networks for modeling of various
nonlinear problems in engineering. In sequential and especially real time processing all neural networks
models fail when faced with outliers. Outliers are found across a wide range of engineering problems.
Recent research results in the field have shown that to avoid overfitting or divergence of the model, new
approach is needed especially if FFNN is to run sequentially or in real time. To accommodate limitations
of FFNN when training data contains a certain number of outliers, this paper presents new learning
algorithm based on improvement of conventional extended Kalman filter (EKF). Extended Kalman filter
robust to outliers (EKF-OR) is probabilistic generative model in which measurement noise covariance is
not constant; the sequence of noise measurement covariance is modeled as stochastic process over the set
of symmetric positive-definite matrices in which prior is modeled as inverse Wishart distribution. In each
iteration EKF-OR simultaneously estimates noise estimates and current best estimate of FFNN parameters.
Bayesian framework enables one to mathematically derive expressions, while analytical intractability
of the Bayes’ update step is solved by using structured variational approximation. All mathematical
expressions in the paper are derived using the first principles. Extensive experimental study shows that
FFNN trained with developed learning algorithm, achieves low prediction error and good generalization
quality regardless of outliers’ presence in training data.

Keywords:

Feedforward neural networks
Sequential learning

Robust extended Kalman filter
Structured variational approximation
Heavy-tailed noise

Inverse Wishart distribution

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction their influence has to be integrated into the model analysis and
validation. Failing to recognize their influence may significantly
jeopardize performance of the model, especially if our model
is to perform sequential processing of the data or run in real
time (Miljkovié, Vukovi¢, Miti¢, & Babi¢, 2013; Vukovi¢ & Miljkovi¢,
2013). Outliers may occur by chance, but more often, they may
originate from temporary sensor failures, some unknown system
anomalies or unmodeled reactions from the environment or some
other disturbances; all of these may cause data points to fall far
away from expected pattern of data distribution, and as an overall
result they may cause our model of the system to diverge from
designed performance.

In this paper, we develop an original approach for neural
network sequential learning that does not require preprocessing
of the data to model and process outliers. Our model is based
on a standard extended Kalman filter (EKF), which is modified

Any real world application of neural network based model of
the system is subjected to the high/moderate noise and existence
of outliers in data. Outliers have enormous practical significance
because these data points occur relatively often in engineering.
Outlier may be defined as an observation that numerically
significantly differs from the rest of the data (Agamennoni, Nieto, &
Nebot, 2012) that it raises suspicion in phenomena or mechanism
we believe that actually generated all data. Typically, outliers fall
outside of an overall pattern of distribution (Agamennoni, Nieto,
& Nebot, 2011; Ting, Theodorou, & Schaal, 2007). In engineering,
especially in applications with real time data processing ability,
outliers are a common phenomenon that needs to be analyzed and
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to process outliers as if these were a “normal” data points.
Performance of EKF is based on an assumption that system
and measurement equations are corrupted with additive white
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Gaussian noise. The noise level is constant, defined with covariance
matrix. Gaussian assumption is backed up with Central Limit
Theorem—which states that as sample goes to infinity, arithmetic
mean of a set of random variables with finite mean and variance
having arbitrary distribution, in limit tends to the Gaussian
distribution; furthermore, Gaussians are popular due to their
simple mathematical form which (in most cases) results in
straightforward closed mathematical calculations. However, in
nature and in engineering, not much of processes obey Gaussian
assumption. Similarly, Gaussian has tin tails, which suggests that
there is a zero chance for misreading or fake measurements.
Failing to recognize and process non-Gaussian noises can seriously
damage model’s performance and cause divergence. To provide
more flexibility with respect to exogenous noise, in our model
we assume additive noise as well, but in contrast to standard EKF
we do not assume Gaussian probability distribution of noise and
allow observation noise covariance matrix to change over time.
These two assumptions have following ramifications: firstly, we
acknowledge that real world does not obey Gaussian distribution
and that is why we introduce probability distribution of the
noise with heavier and longer tail. Secondly, we estimate noise
covariance in each iteration, which helps us to introduce possibly
unmodeled environmental disturbances in the model, where new
information is encoded into estimated noise covariance matrix.
Flexibility of this approach is obvious when it comes to explaining
outliers in data, especially if it is sequentially processed.

The learning algorithm is developed in sequential form
(Vukovié, 2012), which means that whenever new data is available,
the sequential learning continues learning process by updating the
existing neural network, instead of going through entire learning
process from the beginning (Vukovi¢ & Miljkovi¢, 2013). This is
why sequential algorithms are preferred, especially in engineer-
ing and applications where fast development of neural network
based models are needed (Miljkovi¢ & Aleksendri¢, 2009). Sequen-
tial learning has the following characteristics (Huang, Saratchan-
dran, & Sundararajan, 2005):

(1) Learning system uses one and only one training example
in iteration. The examples are presented to the learner
sequentially, one following the other.

(2) Training example is erased from memory after learning
procedure finishes update of network parameters.

(3) Learning system has no prior knowledge of the total number of
examples.

These features of sequential learning are important for mod-
eling of engineering problems, where new data might be avail-
able after neural network model was built. Sequential learning en-
ables learning system to continue learning process if new data is
received, without need to memorize and use old data (Vukovi¢ &
Miljkovié, 2013). Furthermore, when sequential learning is used
the need to have learning algorithm robust to outliers able to se-
quentially process them is even more emphasized.

This paper is organized as follows. The second part of the
paper provides analysis of research results and compares features
of proposed sequential learning algorithm with ability to treat
outliers with the current state in the field. In Section 3 we provide
basic intuition, foundations and mathematical derivation of the
learning algorithm. Through various experimental studies using
real world and synthetic data, in Section 4 we demonstrate and
discuss the potential of the developed learning algorithm for
training of two types of FFNN when faced with outliers in the
data. Eventually, final conclusions and assessments of learning
algorithm’s performance are given in Section 5.

2. Related work and contributions of the paper

Robust statistics is a broad field of research and in this section
of the paper we wish to concentrate solely on soft computing
approaches, especially neural networks. For wider prospective
the reader is kindly referred to Agamennoni et al. (2011, 2012),
Chandola, Banerjee, and Kumar (2009), Purovi¢ and Kovacevié¢
(1999), Hodge and Austin (2004), Markou and Singh (2003a,
2003b) Stankovi¢ and Kovacevi¢ (1986), Schick and Mitter (1994)
and references therein.

If model minimizes L, norm, than it emphasizes outliers
more than it should; this situation leads to over-fitting and poor
generalization of the model when outliers are present. On the
other hand, when L; norm is minimized, model puts emphasis
on data points close to the prediction, which is yet another
undesired situation which neglects update step; certain data point
may not be an outlier but it may generate large error between
prediction of the model and the actual value, which will make
the learning algorithm to classify it as an outlier. To solve this
issue, research community has proposed a great diversity of robust
cost functions called M-estimators (Huber, 2011) for developing
of robust statistical/neural models. The main attractiveness of
M-estimators is their influence function; it is bounded which
guarantees bounded response given arbitrary query point, unlike
non robust cost function whose influence function is unbounded.
This feature makes M-Estimator popular approach for robust
estimation/learning.

In this paragraph we provide information related to the usage
of robust cost function in neural network/support vector machine
community. To achieve robustness of their model, authors in Lee,
Chung, Tsai, and Chang (1999) propose Hample M-estimator to
accommodate large errors in data. Instead of Gaussian activation
function, authors in their radial basis function (RBF) neural
network propose composite of sigmoid functions and introduce
growing and pruning of neurons. The robustness in Chuang, Su,
Jeng, and Hsiao (2002) is introduced in terms of traditional concept
of robustness in statistics; authors make use of robust cost function
such as hyperbolic tangent estimator and build their Support
Vector Regression (SVR) Network in two phases. In the first phase a
classical approach towards SVR optimization is taken. In the second
phase, weights are being adjusted using robust learning based on
robust cost function. Similarly, in Chuang, Su, and Chen (2001)
authors develop fuzzy based model and enable robustness by using
different cost function (Tukey’s biweight cost function). Authors
in Lee, Chiang, Shih, and Tsai (2009) build their model based on
RBF and use Welsch M-estimator as cost function. The Welsch is
chosen as cost function because of its smoothness and reduction
of effects of large errors. Furthermore, their robust RBF model
allows growing and pruning of the neurons based on the concept of
neuron significance (Huang, Saratchandran, & Sundararajan, 2004;
Huang et al., 2005; Vukovi¢ & Miljkovi¢, 2013). In Zhu, Hoi, and
Lyu (2008) authors point out that robustness in the model may
be introduced with regularization term in cost function or to use
robust cost function. To solve these issues and achieve robustness
into their Regularized Kernel regression authors use Huber robust
function because of its ability to use both L, and L; norms. Instead
of solving optimization problem in dual, their algorithm is run in
primal optimization form. A modified Huber robust cost function
is applied in Pernia-Espinoza, Ordieres-Meré, Martinez-de-Pison,
and Gonzdlez-Marcos (2005); authors argue that scalability of
the Huber function is not appropriate, hence they develop a t
based approach (Yohai & Zamar, 1988) which uses scale estimator.
Similarly to previous result (Chuang et al., 2002), in Chuang and
Jeng (2007) and Chuang, Jeng, and Lin (2004) one may see the
two phases in learning, (i) determination of initial structure and
(ii) robust learning. However, the logistic cost function is used in
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