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a b s t r a c t

We propose a cell detection algorithm using non-negative matrix factorization (NMF) on Ca2+ imaging
data. To apply NMF to Ca2+ imaging data, we use the bleaching line of the background fluorescence inten-
sity as an a priori background constraint tomake the NMF uniquely dissociate the background component
from the image data. This constraint helps us to incorporate the effect of dye-bleaching and reduce the
non-uniqueness of the solution. We demonstrate that in the case of noisy data, the NMF algorithm can
detect cells more accurately than Mukamel’s independent component analysis algorithm, a state-of-art
method.We then apply the NMF algorithm to Ca2+ imaging data recorded on the local activities of subcel-
lular structures of multiple cells in a wide area. We show that our method can decompose rapid transient
components corresponding to somas and dendrites ofmany neurons, and furthermore, that it can decom-
pose slow transient components probably corresponding to glial cells.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Ca2+ imaging techniques enable us to measure the tempo-
ral variation in the intracellular Ca2+ concentration (Grynkiewicz,
Poenie, & Tsien, 1985). In the case of nerve cells, the intracellular
Ca2+ concentration is closely related to the membrane potential of
cells because Ca2+ is recruited inside through voltage-dependent
Ca2+ channels whose conductivities depend on the membrane po-
tential. Therefore, the instantaneous elevation of the intracellular
Ca2+ concentration gives us important information on the time
of action potential generation. Many research groups have de-
veloped multi-cellular Ca2+ imaging systems to record individual
cellular activities of a cell assembly in vitro and in vivo. For exam-
ple, Ikegaya et al. (2004), Ikegaya, Le Bon-Jego, and Yuste (2005)
recorded the spike times of hundreds of cortical neurons in in vitro
Ca2+ imaging and discovered a repeated firing sequence from par-
ticular groups of neurons. Dombeck, Harvey, Tian, Looger, and Tank
(2010) recorded in vivo hippocampal CA1 neurons of a moving rat
and showed the spatial distribution of place cells. Furthermore, our
grouphas developed amulti-cellular Ca2+ recording systemable to
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record from dendritic tufts as well as somas (Maeda et al., submit-
ted for publication, 2012). Thus, Ca2+ imaging can also be used to
record the activities of subcellular structures of multiple cells in a
wide area.

The first step of a typical analysis of multi-cellular Ca2+ imag-
ing data is the identification of the positions of individual cells as
regions of interest (ROIs) within the image; this step is called ‘cell
detection’ (Lutcke & Helmchen, 2011). In almost all of the related
studies, experimenters searched for cells by inspecting the movie
data with the naked eye, and they manually identified ROIs in the
movie frames. This manual method is very effective but it needs of
a lot of time and effort. The rapid progress of imaging systems has
made it possible for us to record high spatial and temporal reso-
lution imaging data for a long time (Ziv et al., 2013). However, the
rapid increase in the data volume makes it very difficult for us to
analyze the imaging data manually. This has meant that automatic
or semi-automatic methods of cell detection have become increas-
ingly necessary.

To overcome this issue, many research groups have devised so-
phisticated statistical algorithms (Junek, Chen, Alevra, & Schild,
2009; Miri et al., 2011; Miri, Daie, Burdine, Aksay, & Tank, 2011;
Mukamel, Nimmerjahn, & Schnitzer, 2009; Ozden, Lee, Sullivan,
& Wang, 2008; Reidl, Starke, Omer, Grinvald, & Spors, 2007;
Valmianski et al., 2010; Vogelstein et al., 2010). Some research
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groups have demonstrated the effectiveness of independent com-
ponent analysis (ICA) on high spatial and temporal resolution
imaging data (Mukamel et al., 2009; Reidl et al., 2007). In partic-
ular, Mukamel et al. (2009) proposed an automated image seg-
mentation method based on ICA that provides a fast and efficient
strategy for analyzing large-scale calcium imagingdata sets (Lutcke
& Helmchen, 2011). ICA was first used to detect cells in low-
resolution imaging data about a decade ago (Brown, Yamada, & Se-
jnowski, 2001). A revival in interest in ICA began with Mukamel’s
work (Dombeck et al., 2010; Ziv et al., 2013). This algorithm ini-
tially performs the principal component analysis (PCA) to reduce
the dimensions of the data, and after that it executes a joint maxi-
mization of two objective functions, spatial skewness and tempo-
ral skewness. The performance of this algorithm depends on the
number of principal components and the parameter for tuning the
priorities between the two objective functions, and users need to
fine-tune them.

The aim of this study is to establish a reliable method that de-
tects the position of cells automatically fromsuch ahigh-resolution
multi-cellular Ca2+ imaging data. Our cell detection algorithm
based on non-negative matrix factorization (NMF), which is a low
rank matrix decomposition method that restricts the component
matrices to have non-negative values (Lee & Seung, 1999). NMF is a
well-known algorithm that is useful for separating image data into
constitutive parts (Hoyer, 2004). To apply it to calcium imaging
movie data, we introduced a background constraint: the bleach-
ing line of the background fluorescence intensity, which can be
estimated directly from the imaging data, is given as an a priori
background constraint to uniquely dissociate the background com-
ponent from the image data. This constraint helps to reduce the
non-uniqueness of the solution, which is known to be a big prob-
lem of factorization (Benzi, 2002). The advantages of this method
are that (1) it involves no parameter that needs tuning, except for
the number of cells, (2) model order selection can (in principle) be
used to determine the number of cells, and (3) it can incorporate
the effect of dye-bleaching as a result of being given the bleaching
line of the background as a constraint.

In this paper, we compare the performances of the NMF algo-
rithm and the state-of-art ICA algorithm on simulated movie data.
We demonstrate that in the case of noisy data, the NMF algorithm
can detect cells more accurately than the optimally tuned ICA al-
gorithm, and in the low-noise case, the NMF algorithm almost as
well as the ICA algorithm. After that, we apply the NMF algorithm
to high-resolution Ca2+ imaging data recording the local activi-
ties of subcellular structures of multiple cells in a wide area. We
demonstrate that ourmethod can decompose rapid transient com-
ponents corresponding to somas and dendrites of different active
neurons, and furthermore, it can decompose slow transient com-
ponents probably corresponding to glial cells.

2. Materials and methods

2.1. Cell detection by non-negative matrix factorization

Here, we modify the NMF algorithm so that it can be applied
to Ca2+ imaging data. Let us consider a case in which a two-
dimensional calcium imaging movie consists of T frames in total
and each frame consists of N pixels. The two-dimensional array
of pixels in each frame is rearranged to form a one-dimensional
column vector, and a data matrix F (N by T ) is obtained. For the
sake of simplicity, we assume that F is the sum of fluorescence sig-
nals from K cells labeled 1–K , background fluorescence, and noise.
Moreover, assuming that cells do not spatiallymove during record-
ing, the NMF generative model can be rewritten as

F = SA + sbab + noise, (1)

where S is a spatial component matrix (N by K ) whose kth-column
vector represents the shape of the kth cell, and A is a temporal com-
ponent matrix (K by T ) whose kth-row vector represents the time-
series of fluorescence intensity fluctuations of the kth cell. sb is a
spatial component vector (N by 1) representing the spatial distri-
bution of the background fluorescence intensity, and ab is a tempo-
ral component vector (1 by T ) representing the time course of the
background fluorescence intensity. Thus, under the above assump-
tions, the problemwe need to solve can be formulated as a decom-
position of the data matrix F into four low rank matrices S, A, sb
and ab. Since the fluorescence signals take only positive values, the
matrices S, A, sb, and ab must be restricted to being non-negative.

Cells can be detected by estimating the matrices S, A, sb and
ab. Assuming spatial–temporal white Gaussian noise with uniform
variance across all time and space, the mean square error of
the generative model, which corresponds to the log-likelihood
function of the model, can be written as

J = ∥F − SA − sbab∥2, (2)

where ∥X∥
2 denotes the trace of a square matrix XXT . These

matrices can be estimated by minimizing the mean square error
under the constraint of non-negativity.

To improve the performance of the NMF algorithm, the time
course of the background fluorescence intensity ab is given a pri-
ori. We let ab be a bleaching line of the background fluorescence
intensity and give it the form of a decreasing linear functionwhose
slope β represents the bleaching rate of fluorescence. The bleach-
ing line can be estimated directly from the imaging data. This
constraint helps us to incorporate the effect of dye-bleaching and
reduce the non-uniqueness of the solution. The optimization under
the constraints of an a priori bleaching line ab and non-negativity
of the matrices is performed by a modified version of the alternat-
ing least squares (ALS) algorithm (Berry, Browne, Langville, Pauca,
& Plemmons, 2007), which is known to perform NMF efficiently.
The modified ALS algorithm consists of the following steps.

1. The matrices S and A are initialized with positive random
numbers before starting the matrix updates.

2. While S and A are fixed, a least squares solution for thematrix sb
is calculated using sb = (ababT )−1(F − SA)abT , and the negative
elements of sb are set to be zero.

3. While S and sb are fixed, a least squares solution for the matrix
A is calculated using A = (ST S)−1ST (F − sbab), and the negative
elements of A are set to be zero.

4. While A and sb are fixed, a least squares solution for the matrix
S is calculated using S = (AAT )−1A(F − sbab)T , and the negative
elements of S are set to be zero. Then, all column vectors of S
are normalized to avoid indeterminacy of scale.

5. Return to 2 until the maximum number of iterations (typically
100) is reached.

If all elements of sb are set to zero, this algorithm is identical to
the original ALS algorithm. We confirmed that 100 iterations are
usually enough to converge to the minimum of the mean square
error.

2.2. Mukamel’s ICA algorithm

Here, we briefly describe the ICA algorithm (from Mukamel
et al. (2009), but with slightly different notations) that we used for
comparison.

Similar to the NMF algorithm, the ICA algorithm decomposes
the data matrix F (N by T ) into a spatial component matrix S
and a temporal component matrix A. In the pre-processing for the
ICA algorithm, we center the movie data. First, we normalize the
signal in each pixel by dividing by its mean value over all movie
time frames. We next subtract the mean fluorescence averaged
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