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a b s t r a c t

In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired
tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded
disturbances. We investigate multi-input–multi-output unknown nonaffine nonlinear DT systems and
employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate
the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose
of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the
cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The
weights of both the action NN and the critic NN are directly updated online instead of offline training.
By utilizing Lyapunov’s direct method, the closed-loop tracking errors and the NN estimated weights are
demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the
effectiveness of the present approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Adaptive control theory has been an active area of research for
several decades, which aims to find stable controllers for nonlin-
ear dynamic systems (Chemachema, 2012; Chen&Khalil, 1995; Ge,
Hang, & Zhang, 1999; Lewis, Yesildirek, & Liu, 1996; Liu, Venayag-
amoorthy, & Wunsch, 2003; Nakanishi & Schaal, 2004; Naren-
dra & Mukhopadhyay, 1994). Nevertheless, stability is only a bare
minimum requirement in a system design. The optimality based
on a prescribed cost function is usually taken into consideration
for control problems of nonlinear systems. In other words, con-
trol schemes should be proposed to guarantee the stability of the
closed-loop system, while keeping the cost function as small as
possible.

In order to derive such a controller, large amounts of significant
methods have been proposed. Among these approaches, dynamic
programming (DP) has been widely applied to generate optimal
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control for nonlinear systems by employing Bellman’s principle
of optimality (Bellman, 1957). The method guarantees to perform
optimization backward-in-time. However, a serious shortcoming
about DP is that the computation is untenable to be runwith the in-
creasing dimension of nonlinear systems, which is thewell-known
‘‘curse of dimensionality’’. Moreover, the backward direction of
search obviously prohibits the wide use of DP in real-time con-
trol. On the other hand, with considerable investigations engaged
in artificial neural networks (NNs), researchers find NNs can suc-
cessfully be applied to intelligent control due to their properties of
nonlinearity, adaptivity, self-learning, and fault tolerance (Haykin,
2008; Yu, 2009). Consequently, NNs are extensively utilized for
universal function approximation in adaptive dynamic program-
ming (ADP) algorithms, which were proposed by Werbos (1991,
1992, 2007, 2008), as methods to solve optimal control problems
forward-in-time. There are several synonyms used for ADP includ-
ing ‘‘adaptive dynamic programming’’ (Liu, Wang, & Yang, 2013;
Liu &Wei, 2013; Liu, Zhang, & Zhang, 2005; Murray, Cox, Lendaris,
& Saeks, 2002;Wang, Liu, &Wei, 2012;Wang, Liu, Wei, Zhao, & Jin,
2012;Wang, Zhang, & Liu, 2009;Wei& Liu, 2012; Zhang,Wei, & Liu,
2011), ‘‘approximate dynamic programming’’ (Al-Tamimi, Lewis,
& Abu-Khalaf, 2008), ‘‘adaptive critic designs’’ (ACDs) (Prokhorov
& Wunsch, 1997), ‘‘neuro-dynamic programming’’ (NDP) (Bert-
sekas & Tsitsiklis, 1996), and ‘‘neural dynamic programming’’ (Si
& Wang, 2001). Furthermore, according to Prokhorov andWunsch
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(1997) andWerbos (1992), ADP algorithms aremainly classified as
follows: heuristic dynamic programming (HDP), dual heuris-
tic programming (DHP), globalized dual heuristic programming
(GDHP). When the action is introduced as an additional input to
the critic, ACDs are referred to action dependent version of the
ACDs, such as action dependent HDP (ADHDP), action dependent
DHP (ADDHP), and action dependent GDHP (ADGDHP).

Unfortunately, most of ADP algorithms are implemented either
by an offline process via iterative schemes or need a priori
knowledge of dynamics of nonlinear systems. Since the exact
knowledge of nonlinear systems is often unavailable, it brings
about great challenges to implement these algorithms. In order to
overcome the difficulty, reinforcement learning (RL) is introduced
to cope with optimal control problems. RL is a class of approaches
used in machine learning to methodically revise the actions of an
agent based on responses from its environment (Sutton & Barto,
1998). A distinct difference between the traditional supervised NN
learning and RL is that, there is no prescribed behavior or training
model proposed to RL schemes. If the cost function is viewed as the
reinforcement signal, then ADP algorithms become RL approaches.
Therefore, ADP algorithms are actually a class of RLmethods (Lewis
& Vamvoudakis, 2011; Lewis, Vrabie, & Vamvoudakis, 2012). Since
RL shares considerable common features with ADP algorithms, it is
often employed for adaptive optimal controller designs.

Applications of RL methods to feedback control have been
widely investigated in the literature (Bhasin et al., 2013; He
& Jagannathan, 2005; Lewis, Lendaris, & Liu, 2008; Lewis &
Vamvoudakis, 2011; Liu, Yang, & Li, 2013; Vamvoudakis & Lewis,
2010, 2011; Yang & Jagannathan, 2012; Yang, Liu, & Huang, 2013;
Yang, Si, Tsakalis, & Rodriguez, 2009). In He and Jagannathan
(2005), an RL-based output feedback control was developed for
multi-input–multi-output (MIMO) unknown affine nonlinear DT
systems. By using Lyapunov’s direct approach, the estimated state
errors, the tracking errors and the NN estimated weights were
all guaranteed to be uniformly ultimately bounded (UUB). After
that, in Yang et al. (2009), a direct HDP was proposed to obtain
online learning control for MIMO unknown affine nonlinear DT
systems. With the aid of Lyapunov’s direct method, the uniform
ultimate boundedness of both the closed-loop tracking errors and
the NN estimatedweightswas derived. Just asmentioned above, in
this literature, the authors took the cost function as the reinforce-
ment signal. Recently, in Vamvoudakis and Lewis (2010), an online
algorithm based on RL for affine nonlinear continuous-time (CT)
systems was proposed. By employing the algorithm, both the op-
timal cost and the optimal control were well approximated in real
time, while guaranteeing the uniform ultimate boundedness of the
closed-loop system. In addition, the NN estimated weights were
guaranteed to be UUB by using Lyapunov’s direct method. More
recently, in Vamvoudakis and Lewis (2011), RL methods were also
applied to multi-player differential games for nonlinear CT sys-
tems. Based on Lyapunov’s direct method, the uniform ultimate
boundedness of both the closed-loop system and the NN estimated
weights was demonstrated.

However, all of them deal with feedback control problems
of RL methods for affine nonlinear systems. To the best of our
knowledge, there are rather few investigations on feedback con-
trol of RL approaches for nonaffine nonlinear systems, especially
MIMOunknownnonaffine nonlinear DT systems. Though there ex-
ist some researches about nonaffine nonlinear DT systems (Deng,
Li, &Wu, 2008;Noriega&Wang, 1998; Yang, Vance, & Jagannathan,
2008), most of them focus on feedback control problems of nonlin-
ear autoregressive moving average with exogenous inputs (NAR-
MAX) systems. This form is less convenient than the state-form
of nonaffine nonlinear systems for purpose of adaptive control

using NNs. On the other hand, since the output of affine nonlin-
ear systems is linear with respect to the control input, it is easy to
design a controller to follow prescribed trajectories by using feed-
back linearization methods. Nevertheless, feedback linearization
approaches cannot be implemented for nonaffine nonlinear sys-
tems, for the output of this type of systems depends nonlinearly on
the control signal. It gives rise to great difficulties for researchers
to design an efficient controller of such a nonaffine nonlinear sys-
tem, which aims at achieving desired trajectories. Furthermore, in
real engineering, control approaches of affine nonlinear systems do
not always hold and control methods for nonaffine nonlinear sys-
tems are necessary. Therefore, control problems of RL methods for
unknown nonaffine nonlinear systems are very significant in both
theory and applications.

The objective of this paper is to develop an online direct adap-
tive control based on RL methods by delivering a desired tracking
performance for MIMO unknown nonaffine nonlinear DT systems
with unknown bounded disturbances. Two NNs are employed in
the controller design: an action NN is utilized to generate the con-
trol signal. Meanwhile, by using Implicit Function Theorem, the
action NN approximation is well designed to cancel the nonlin-
earity of unknown nonlinear DT systems, for purpose of utilizing
feedback linearization methods. A critic NN is used to estimate the
prescribed cost function, which satisfies the recursive equations
derived fromHDP. The weights of both the action NN and the critic
NN are directly updated online instead of preliminary offline train-
ing. By using Lyapunov’s direct method, the closed-loop tracking
errors and the NN estimated weights are verified to be UUB.

The main contributions of the paper include the following:

1. To the best of our knowledge, it is the first time that an online
RL-based direct adaptive control is developed for the state-
form of MIMO unknown nonaffine nonlinear DT systems with
unknown bounded disturbances.

2. Compared with He and Jagannathan (2005), Yang et al. (2009),
and Yang and Jagannathan (2012), we consider nonaffine non-
linear DT systems with unknown system drift dynamics. A sig-
nificant difference between these literature and the present
paper is that, in our case, the adaptive control is developed
based on Implicit Function TheoremandRLmethods since feed-
back linearization methods cannot be directly implemented for
nonaffine nonlinear DT systems.

The rest of the paper is organized as follows. Section 2 provides
the problem statement and preliminaries. Section 3 develops an
online adaptive control by using RL approaches. Section 4 shows
the stability analysis and the performance of the closed-loop
systems. Section 5 presents two simulation results to verify the
effectiveness of the established theory. Finally, Section 6 gives
several concluding remarks.

For convenience,we introduce the notations,whichwill be used
throughout the paper.

• R denotes the real numbers, Rm and Rm×n denote the real m-
vectors and the real m × n matrices, respectively. ⊗ denotes
the Kronecker product. If there is no special explanation, T is a
transposition symbol.

• Ω is a compact set of Rmn, Cm(Ω) =

f (m)

∈ C|f :Ω → Rm

.

Let Ωi ⊂ Ω (i = 1, 2), Ω1 × Ω2 =

(x, y)|x ∈ Ω1, y ∈ Ω2


stands for the Cartesian product of Ω1 and Ω2.

• ∥·∥ stands for any suitable norm.When z is a vector,∥z∥denotes
the Euclidean norm of z. When A is a matrix, ∥A∥ denotes the
2-norm of A.
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