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a b s t r a c t

This paper investigates the exponential synchronization of coupled memristor-based chaotic neural
networkswith both time-varying delays and general activation functions. And here, we adopt nonsmooth
analysis and control theory to handlememristor-based chaotic neural networkswith discontinuous right-
hand side. In particular, several new criteria ensuring exponential synchronization of two memristor-
based chaotic neural networks are obtained via periodically intermittent control. In addition, the new
proposed results here are very easy to verify and also complement, extend the earlier publications.
Numerical simulations on the chaotic systems are presented to illustrate the effectiveness of the
theoretical results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Memristor-based neural networksmade of hybrid complemen-
tary metal–oxide–semiconductors have a very wide range of uses
in bioinspired engineering (Cantley, Subramaniam, Stiegler, Chap-
man, & Vogel, 2012; Itoh & Chua, 2009; Kim, Sah, Yang, Roska, &
Chua, 2012; Pershin & Di Ventra, 2010; Sharifiy & Banadaki, 2010).
Memristor-based neural networks are well suited to characterize
the nonvolatile feature of thememory cell because of hysteresis ef-
fects. The studies of memristor-based neural networks would ben-
efit a number of important applications in neural learning circuits
(Cantley et al., 2012; Itoh & Chua, 2009; Sharifiy & Banadaki, 2010),
associative memories (Pershin & Di Ventra, 2010), new classes of
artificial neural systems (Hu & Wang, 2010; Kim et al., 2012), and
so on.

The memristor-based neural networks are a class of state-
dependent nonlinear systems from a systems-theoretic point of
view (Bao & Zeng, 2013; Chen, Zeng, & Jiang, 2014; Hu & Wang,
2010; Wen & Zeng, 2012; Wu, Wen, & Zeng, 2012; Wu & Zeng,
2012; Yang, Cao, & Yu, 2014; Zhang & Shen, 2013; Zhang, Shen,
& Sun, 2012; Zhang, Shen, & Wang, 2013). Such a system can
reveal coexisting solutions, jumped, transient chaos of rich and
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complex nonlinear behaviors, whereas, in the past decades, state-
dependent nonlinear system has not received considerable atten-
tion. With the development and application of memristors, the
studies of such state-dependent nonlinear system with its vari-
ous generalizations may be an active area of research, to allow the
memristors to be readily used in emerging technologies.

As is well known, chaos synchronization in nonlinear science
has been known for a rather long time, and its applications to
diverse areas such as secure communications and biological and
chemical reactions. Since then, many important and fundamental
results have been reported on the synchronization and control of
chaotic systems, e.g, see Cao and Wan (2014), Liu (2009) and Liu,
Wang, and Liu (2008). And many control approaches have been
proposed to stabilize chaotic systems such as adaptive control
(Zhang, Xie, Wang, & Zheng, 2007), feedback control (Zhu, Zhang,
Fei, Zhang, & Li, 2009), impulsive control (Guan & Zhang, 2008;
Sheng & Yang, 2008; Sun, Chen, Lu, & Chen, 2012), and intermittent
control (Cai, Liu, Xu, & Shen, 2009; Hu, Yu, Jiang, & Teng, 2010a;
Huang & Li, 2010; Huang, Li, & Liu, 2008; Huang, Li, Yu, & Chen,
2009; Yu, Hu, Jiang, & Teng, 2011).

Comparing with continuous control of chaos, the discontinu-
ous control method, such as impulsive control and intermittent
control, have received much interest because they are practical
and easily implemented in engineering such as transportation and
communication (Hu et al., 2010a; Huang, Li, Yu et al., 2009). The
intermittent control is different from the impulsive control since
impulsive control is activated only at some isolated instants, while
intermittent control has a nonzero control width. In this scheme,
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the synchronization signals are used in the slave system at peri-
odic time intervals (control width) when the slave system tracks
the orbit of the driving system (Hu et al., 2010a; Huang et al., 2008;
Huang, Li, Yu et al., 2009).

Moreover, to use intermittent control proves to be more cost
effective than using control at all times (Amritkar & Gupte, 1993;
Hu et al., 2010a; Huang, Li, Yu et al., 2009). After several decades,
numerous studies with respect to intermittent control have been
carried out (Hu, Yu, Jiang, & Teng, 2010b; Huang, Li, & Han, 2009;
Li & Cao, 2014; Li, Feng, & Liao, 2007; Li, Liao, & Huang, 2007; Xia
& Cao, 2009; Yang & Cao, 2009). However, on the synchroniza-
tion of memristor-based chaotic neural networks via intermittent
control, few results are found in the literature. On the other hand,
the memristor-based chaotic neural networks with discontinuous
right-hand side, this problem brings challenges to investigate the
exponential synchronization of the systems via intermittent con-
trol.

Recently, Bao, Liu, & Xu (2010a, 2010b) show that the
memristor-based chaotic system is more safe in secure communi-
cations. Therefore, using intermittent control to get synchroniza-
tion of memristor-based chaotic neural networks is also more safe
in secure communications, because intermittent control is the dis-
continuous controlmethod,which can increase the difficultywhen
capturing the information by sending a periodic signal.

Motivated by the above discussions, in this paper, we will
derive several new criteria ensuring exponential synchronization
of memristor-based chaotic neural networks with both time-
varying delays and general activation functions via periodically
intermittent control.

The main advantages of this paper lie in the following aspects.
Firstly, the dynamic analysis here adopts nonsmooth analysis and
control theory to handle memristor based neural networks with
discontinuous right-hand side. Secondly, periodically intermittent
controller technique, which is totally different from the techniques
employed in Bao and Zeng (2013), Chen et al. (2014), Hu and
Wang (2010), Wen and Zeng (2012), Wu et al. (2012), Wu and
Zeng (2012), Yang et al. (2014), Zhang et al. (2012), Zhang et al.
(2013) and Zhang and Shen (2013) is to study the addressed
neural networks in the paper. Thirdly, as the generalization of the
obtained results, exponential synchronization of addressed neural
networks under various feedback functions are discussed in detail.
Lastly, some new criteria are derived to ensure synchronization of
the neural networks, and the new proposed results here are very
easy to verify and they achieve a valuable improvement, and also
complement, and extend the earlier publications.

The organization of this paper is as follows. Some preliminaries
are introduced in Section 2. In Section 3, some new criteria for
the exponential synchronization are derived by using nonsmooth
analysis and control theory. And then, numerical simulations are
given to demonstrate the effectiveness of the proposed approach
in Section 4. Finally, our conclusion is given in Section 5.

2. Preliminaries

In this paper, based on the previous works (Chen et al., 2014;
Hu et al., 2010b;Wu et al., 2012; Zhang & Shen, 2013), we consider
a class of memristor-based neural networks with time-varying
delays as follows:

dxi(t)
dt

= −xi(t)+

n
j=1

aij(xj(t))fj(xj(t))

+

n
j=1

bij(xj(t − τj(t)))gj(xj(t − τj(t)))+ Ii,

t ≥ 0, i ∈ N, (1)

where

aij(xj(t)) =
Mij

Ci
× sgnij,

bij(xj(t − τj(t))) =
Wij

Ci
× sgnij

where sgnij = 1, if i ≠ j holds, otherwise, −1. Mij and Wij

denote the memductances of memristors Rij andRij, respectively.
In addition, Rij represents the memristor between the neuron
activation functions fj(xj(t)) and xi(t),Rij represents thememristor
between the neuron activation functions gj(xj(t − τj(t))) and xi(t).
And aij(xj(t)), bij(xj(t−τj(t))) arememristors synaptic connection
weights, denote the strengths of the jth unit on the ith unit at time
t and time t−τj(t), respectively. fj, gj : R → R denotes the neuron
activation functions, τj(t) corresponds to the transmission delays
and satisfies 0 ≤ τj(t) ≤ τ , τ̇j(t) ≤ σ0 < 1 (τ > 0, σ0 is a
constant), Ii is an external constant input, i, j ∈ N, N = 1, 2, . . . , n.

As we know, capacitor Ci is changeless, memductances Mij
and Wij respond to changes in pinched hysteresis loops. Thus,
aij(xj(t)), bij(xj(t − τj(t)))will change, as pinched hysteresis loops
change (Hu &Wang, 2010;Wen & Zeng, 2012;Wu et al., 2012;Wu
& Zeng, 2012; Zhang et al., 2012, 2013). According to the feature of
the memristor and the current–voltage characteristic, then

aij(xj(t)) =


a∗

ij, |xj(t)| ≤ Tj,
a∗∗

ij , |xj(t)| > Tj,

bij(xj(t − τj(t))) =


b∗

ij, |xj(t − τj(t))| ≤ Tj,
b∗∗

ij , |xj(t − τj(t))| > Tj,

in which switching jumps Tj > 0, a∗

ij, a
∗∗

ij , b
∗

ij, b
∗∗

ij , i, j ∈ N , are all
constant numbers.

Throughout this paper, we consider system (1) as the drive
system and corresponding response system is as follows:

dyi(t)
dt

= −yi(t)+

n
j=1

aij(yj(t))fj(yj(t))

+

n
j=1

bij(yj(t − τj(t)))gj(yj(t − τj(t)))

+ Ii + ui(t), t ≥ 0, i ∈ N, (2)

where i, j ∈ N ,

aij(yj(t)) =


a∗

ij, |yj(t)| ≤ Tj,
a∗∗

ij , |yj(t)| > Tj,

bij(yj(t − τj(t))) =


b∗

ij, |yj(t − τj(t))| ≤ Tj,
b∗∗

ij , |yj(t − τj(t))| > Tj,

and ui(t) is a periodically intermittent controller which is defined
by

ui(t) =


n

j=1

ωij(yj(t)− xj(t)), mT ≤ t ≤ mT + δ,

0, mT + δ < t ≤ (m + 1)T ,

(3)

where m = 0, 1, 2, . . . , and ωij are constants for all i, j ∈ N ,
which denote the control gains, T denotes the control period and
0 < δ < T is called the control width.

In this paper, solutions of all systems considered in the fol-
lowing are intended in Filippov’s sense (Filippov, 1988). We de-
fine ∥φ∥ = sup−τ≤t≤0[

n
i=1 |φi(t)|p]1/p, where p is a constant and

p ≥ 1, for ∀φ = (φ1(t), φ2(t), . . . , φn(t)) ∈ C([−τ , 0],Rn),
co{ξ

i
, ξ i} denotes the convex hull of {ξ

i
, ξ i}. aij = min{a∗

ij, a
∗∗

ij },

aij = max{a∗

ij, a
∗∗

ij }, bij = min{b∗

ij, b
∗∗

ij }, bij = max{b∗

ij, b
∗∗

ij }. For
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