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a b s t r a c t

This paper presents a novel collective neurodynamic optimization method for solving nonconvex opti-
mization problems with bound constraints. First, it is proved that a one-layer projection neural network
has a property that its equilibria are in one-to-one correspondence with the Karush–Kuhn–Tucker points
of the constrained optimization problem. Next, a collective neurodynamic optimization approach is de-
veloped by utilizing a group of recurrent neural networks in framework of particle swarmoptimization by
emulating the paradigm of brainstorming. Each recurrent neural network carries out precise constrained
local search according to its own neurodynamic equations. By iteratively improving the solution qual-
ity of each recurrent neural network using the information of locally best known solution and globally
best known solution, the group can obtain the global optimal solution to a nonconvex optimization prob-
lem. The advantages of the proposed collective neurodynamic optimization approach over evolutionary
approaches lie in its constraint handling ability and real-time computational efficiency. The effective-
ness and characteristics of the proposed approach are illustrated by using many multimodal benchmark
functions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization problems are omnipresent in scientific and en-
gineering applications including system modeling and control,
signal processing, computer vision, pattern recognition, machine
learning, and so on (e.g., see Boyd and Vandenberghe (2004),
Hyvärinen and Oja (2000), Vapnik (2000)). As many real-world
optimization problems become increasingly complex and fall into
nonconvex optimization, computing global optimal solutions in
real time using traditional numerical optimization techniques is
computationally demanding. Developing better and efficient op-
timization methods is always desirable. A promising approach to
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real-time optimization is neurodynamic optimization where re-
current neural networks (RNNs) serve as parallel computational
models for optimization problems solving (Xia &Wang, 1999). The
essence of neurodynamic optimization lies in its inherent nature of
parallel and distributed information processing and the availability
of hardware implementation.

Since the pioneeringwork of Hopfield and Tank (1985) on using
a neural network for solving the Traveling-Salesmen Problem, neu-
rodynamic optimization has received a great deal of attention over
the past three decades. Many researchers investigated alternative
neurodynamic optimization models for solving various linear and
nonlinear optimization problems. For example, Kennedy and Chua
(1988) presented a recurrent neural network for nonlinear opti-
mization by utilizing finite penalty parameter method to compute
approximate optimal solutions. Zhang and Constantinides (1992)
proposed a two-layer Lagrangian neural network to deal with the
optimization problems with equality constraints. Wang (1994)
proposed a deterministic annealing neural network for solving
convex programming problems. Wang (1996) presented a recur-
rent neural network for solving the shortest path problem. Wang
(1997) presented a primal–dual neural network for the zero–one
integer linear programming. In recent years,many recurrent neural
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network models with simple model complexity and good conver-
gence properties have been developed for linear programming (Liu
&Wang, 2008a, 2011a), quadratic programming (Gao & Liao, 2010;
Hu & Wang, 2008; Liu & Wang, 2006, 2008b; Xia, Feng, and Wang,
2004), variational inequalities (Hu & Wang, 2006, 2007), gen-
eral convex nonlinear programming (Xia, Feng, & Wang, 2008;
Xia, Leung, & Wang, 2002; Xia & Wang, 2004a, 2004b, 2005),
pseudoconvex optimization (Guo, Liu, & Wang, 2011; Liu, Guo,
& Wang, 2012), and nonsmooth optimization (Bian & Xue, 2009;
Cheng et al., 2011; Forti, Nistri, & Quincampoix, 2004; Liu &Wang,
2011b, 2013). Most of the designed models are based on some
classic optimality equations and conditions (Liao, Qi, & Qi, 2004).
For example, Xia et al. (2002) applied a projection method for RNN
design. Liu andWang (2006) used duality properties. Liu andWang
(2008b) was based on the Karush–Kuhn–Tucker (KKT) conditions.
Liu andWang (2011a) applied saddle point theorems and obtained
the finite-time convergence property. Cheng et al. (2011) applied
the Lagrangian method for solving nonsmooth convex optimiza-
tion problems. Hosseini, Wang, and Hosseini (2013), Liu andWang
(2011b), and Li, Yan, and Wang (2014) used nonsmooth penalty
functionmethods for solving some generalized convex nonsmooth
optimization problems.

While neurodynamic optimization approaches with individual
RNNs have achieved great successes, they would reach their solv-
ability limits at constrained optimization problems with unimodal
objective functions exclusively and are impotent for global opti-
mization with multimodal objective functions. When dealing with
general nonconvex optimization problems, the dynamic behav-
iors of a recurrent neural network could change drastically and
become unpredictable. In parallel to neurodynamic optimization
research, population-based evolutionary computation approaches
emerged as a branch of popular meta-heuristic methods for global
andmulti-objective optimization in recent years. Evolutionary op-
timization algorithms are stochastic, heuristic, discrete-time, and
multiple-state in their nature. In particular, particle swarm op-
timization (PSO) is a global optimization method introduced by
Kennedy and Eberhart that mimics swarm behaviors such as birds
flocking and fish schooling (Eberhart & Kennedy, 1995; Kennedy
& Eberhart, 1995). In recent years, a number of variant PSO al-
gorithms have been proposed for the purpose of accelerating
convergence speed and avoiding premature convergence. For ex-
ample, Liang, Qin, Suganthan, and Baskar (2006) proposed a com-
prehensive PSO for discouraging premature convergence. Zhan,
Zhang and Chung (2009) proposed an adaptive PSO for better
search efficiency. Zhan, Zhang, Yi, and Shi (2011) proposed an or-
thogonal learning PSO for better solution quality and stronger ro-
bustness. Owing to its ease of implementation and high efficiency,
PSO has been widely adopted and successfully applied for many
optimization problems (Chen et al., 2010; Duan, Luo, Shi, & Ma,
2013; Eberhart & Shi, 2007).

Despite of their capabilities of global search, PSO algorithms are
deficient in precise local search and constraint handling. In con-
trast, based on optimization and dynamic systems theories, neuro-
dynamic optimization approaches are competent for constrained
local search, but incapable of global search in the presence of non-
convexity. It would be a good idea to combine the two types of
optimization methods for constrained global optimization. In this
paper, a collective neurodynamic optimization approach in frame-
work of PSO is proposed for optimization problems with bound
constraints. Inspired by brainstorming, a number of RNNs are ex-
ploited in a cooperative way to tackle constrained nonconvex op-
timization problems. Each neural network carries out local search
according to its own neurodynamics and converges to a candidate
solution. The movements of the neural networks are guided by in-
dividual best known solution as well as the best known solution
of the entire group. By iteratively improving the initial conditions

and the converged solutions, the neural network group is expected
to discover the global optimal solution. The proposed approach can
be viewed as an emulation for the brainstorming process of human
beings, which offers a new paradigm for real-time optimization.

The rest of this paper is organized as follows. In Section 2, a
neural networkmodel is reviewed. In Section 3, the optimality and
convergence of the neural network are investigated. In Section 4,
a collective neurodynamic optimization approach is developed. In
Section 5, simulation results on benchmark problems are provided.
Finally, Section 6 concludes this paper.

2. Problem formulation and model description

Consider an optimization problem with bound constraints

minimize f (x)
subject to x ∈ Ω (1)

where x = (x1, x2, . . . , xn)T ∈ ℜn is the decision variable, f :
ℜ

n
→ ℜ is an objective function, Ω is a nonempty and closed

convex set inℜn. In this paper, Ω is assumed to be a box set.

Remark 1. Consider a general constrained optimization problem
given by

minimize f̃ (x)
subject to gi(x) ≤ 0, i = 1, . . . ,m,

x ∈ Ω, (2)

where gi : ℜn
→ ℜ, i = 1, . . . ,m, are inequality constraints.

One common approach to deal with the constrained optimization
problem (2) is to introduce a penalty term into the objective
function to penalize constraint violations (Fiacco & McCormick,
1990). The transformed objective function can be described as

f (x) = f̃ (x)+ γφ(g(x)), (3)

where φ(g(x)) ≥ 0 is a real-valued function which imposes a
penalty on constraint violation controlled by a penalty parameter
γ . The penalty function method enables the solution to the opti-
mization problem (2) to be obtained by solving the optimization
problem (1) with a suitably defined exact penalty function. An ex-
act penalty function has a property such that there exists a finite
penalty parameter for which a solution to the penalized problem
is a solution to the corresponding constrained problem. As a result,
there is an incentive to develop a reliable and efficient approach to
the optimization problem (1).

Xia et al. (2002) presented aprojectionbasedneural network for
solving convex optimization problems subject to box constraints.
The neural network model does not have any design parameter
and hence it is more convenient for implementation. The neural
network model is briefly reviewed here.

The one-layer projection neural network for the optimization
problem (1) is described by the following dynamical equation:

ẋ(t) = −x(t)+ PΩ(x(t)−∇f (x(t))), (4)

where x ∈ ℜn is the state vector of the neural network, which
corresponds to the decision vector in (1), ∇f is the gradient of f ,
and PΩ is a projection operator defined as

PΩ(u) = argmin
v∈Ω
||u− v||. (5)

Computing the projection of a point onto a convex set is generally
nontrivial. However, ifΩ is a box set or a sphere set, the projection
is well defined. When Ω is a box set, i.e., Ω = {u ∈ ℜn

: li ≤ ui ≤

hi, i = 1, . . . , n}, PΩ is defined as

PΩ(ui) =

li, ui < li;
ui, li ≤ ui ≤ hi;

hi, ui > hi.
(6)
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