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a b s t r a c t

Support vector regression (SVR) techniques are aimed at discovering a linear or nonlinear structure hidden
in sample data. Most existing regression techniques take the assumption that the error distribution is
Gaussian. However, it was observed that the noise in some real-world applications, such as wind power
forecasting and direction of the arrival estimation problem, does not satisfy Gaussian distribution, but a
beta distribution, Laplacian distribution, or othermodels. In these cases the current regression techniques
are not optimal. According to the Bayesian approach, we derive a general loss function and develop a
technique of the uniform model of ν-support vector regression for the general noise model (N-SVR).
The Augmented Lagrange Multiplier method is introduced to solve N-SVR. Numerical experiments on
artificial data sets, UCI data and short-term wind speed prediction are conducted. The results show the
effectiveness of the proposed technique.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Regression is an old topic in the domain of learning functions
from a set of samples (Hastie, Tibshirani, & Friedman, 2009). It
provides researchers and engineers with a powerful tool to extract
hidden rules of data. The trained model is used to predict future
events with the information of past or present events. Regression
analysis is now successfully applied in nearly all fields of science
and technology, including the social sciences, economics, finance,
wind power prediction for grid operation. However this domain
is still attracting much attention from research and application
domains.

Generally speaking, there are three important issues in design-
ing a regression algorithm: model structures, objective functions
and optimization strategies. The model structures include linear
or nonlinear functions (Park & Lee, 2005), neural networks (Spech,

∗ Corresponding author at: College of Mathematics and Information Science,
Hebei Normal University, Shijiazhuang, Hebei, 050024, China. Tel.: +86 22
27401839.

E-mail address: huqinghua@tju.edu.cn (Q. Hu).

1990), decision trees (Esposito, Malerba, & Semeraro, 1997), and
so on; optimization objectives include ϵ-insensitive loss (Cortes
& Vapnik, 1995; Vapnik, 1995; Vapnik, Golowich, & Smola, 1996),
squared loss (Suykens, Lukas, & Vandewalle, 2000; Wu, 2010; Wu
& Law, 2011), robust Huber loss (Olvi & David, 2000) etc. According
to the formulation of optimization functions, a collection of opti-
mization algorithms (Ma, 2010) have been developed. In this work,
we focus on theproblemwhich optimal formulation should be con-
sidered with respect to different error models.

Suppose we are given a set of training data

Dl = {(x1, y1), (x2, y2), . . . , (xl, yl)}, (1)

where xi ∈ RL, yi ∈ R, i = 1, 2, . . . , l. Take a multivariate linear
regression task f as an example. The form is

f (x) = ωT
· x + b, (2)

where ω ∈ RL, b ∈ R, i = 1, 2, . . . , l. The task is to learn the
parameter vectorsω and parameter b, by minimizing the objective
function

gLR =

l
i=1

(yi − ωT
· xi − b)2. (3)
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Fig. 1. Gaussian PDF and beta PDF of parameters.

The objective function of the sum-of-squares error is usually
used in regression. The trained model is optimal, if the samples
have been corrupted by independent and identical probability
distributions (i.i.d.). Noise satisfying Gaussian distribution with
zeros mean and variance σ 2, i.e., yi = f (xi) + ξi, i = 1, . . . , l, ξi ∼

N(0, σ 2).
In the recent years, the support vector regressor (SVR) is grow-

ing up as a popular technique (Cortes & Vapnik, 1995; Cristian-
ini & Shawe, 2000; Smola & Schölkopf, 2004; Vapnik, 1995, 1998,
1999; Vapnik et al., 1996; Wu, 2010; Wu & Law, 2011). It is a
universal regression machine based on the V–C dimension the-
ory. This technique is developed with the Structural Risk Mini-
mization (SRM) principle, which has shown its effectiveness in
applications. The classical SVR is optimized byminimizingVapnik’s
ϵ-insensitive loss function of residuals and has achieved good per-
formance in a variety of practical applications (Bayro-Corrochano
& Arana-Daniel, 2010; Duan, Xu, & Tsang, 2012; Huang, Song, Wu,
& You, 2012; Kwok & Tsang, 2003; Lopez &Dorronsoro, 2012; Yang
& Ong, 2011).

In 1995, ϵ-SVR was proposed by Vapnik and his research team
(Cortes & Vapnik, 1995; Vapnik, 1995; Vapnik et al., 1996). In
2000, ν-SVR was introduced by Schölkopf, Smola, Williamson,
and Bartlett (2000), which automatically computes ϵ. Suykens
et al. (2000) constructed least squares support vector regression
with Gaussian noise (LS-SVR). Wu (Wu, 2010; Wu & Law, 2011)
and Pontil, Mukherjee, and Girosi (1998) constructed ν-support
vector regression with Gaussian noise (GN-SVR). If the noise
obeys the Gaussian distribution, the outputs of the models are
optimal. However, it was found that the noise in some real-world
applications, just like wind power forecast and direction-of-arrival
estimation problem, does not satisfy Gaussian distribution, but
a beta distribution or Laplace distribution, respectively. In these
cases these regression techniques are not optimal.

The principle of ν-support vector regression (ν-SVR) can be
written as (Chalimourda, Schölkopf, & Smola, 2004; Chih-Chung &
Chih-Jen, 2002; Schölkopf et al., 2000):

min


gPν-SVR =

1
2
∥ω∥

2
+ C ·


νϵ +

1
l

l
i=1

(ξi + ξ ∗

i )


Subject to :

ωT
· xi + b − yi ≤ ϵ + ξi

yi − ωT
· xi − b ≤ ϵ + ξ ∗

i

ξi, ξ
∗

i ≥ 0, i = 1, 2, . . . , l, ϵ ≥ 0,

(4)

where ξi, ξ
∗

i are two slack variables. The constant C > 0 deter-
mines the trade-off between the flatness of f and the amount up
to which deviations larger than ϵ are tolerated. ν ∈ (0, 1] is a con-
stant which controls the number of support vectors. In the ν-SVR
the size of ϵ is not given a priori but a variable. Its value is traded
off against themodel complexity and slack variables via a constant
ν (Chalimourda et al., 2004). This corresponds to dealing with a so-
called ϵ-insensitive loss function (Cortes & Vapnik, 1995; Vapnik,
1995) described by

cϵ(ξ) = |ξ |ϵ =


0, if |ξ | ≤ ϵ,
|ξ | − ϵ, otherwise. (5)

In 2002, ϵ-SVR for a general noise model was proposed in
Schölkopf and Smola (2002):

min


gϵ-SVR =

1
2
∥ω∥

2
+ C ·


l

i=1

c(ξi) +c(ξ ∗

i )


Subject to :

ωT
· xi + b − yi ≤ ϵ + ξi

yi − ωT
· xi − b ≤ ϵ + ξ ∗

i

ξi, ξ
∗

i ≥ 0, i = 1, 2, . . . , l,

(6)

where c(x, y, f (x)) = c(|y − f (x)|ϵ) is a general convex loss
function in the sample point (xi, yi) of Dl. |y − f (x)|ϵ in (5) is
Vapnik’s ϵ-insensitive loss function.

Using Lagrange multiplier techniques (Cortes & Vapnik, 1995;
Vapnik, 1995), Problem (4) can be transformed to a convex
optimization problemwith a globalminimum. At the optimum, the
regression estimate takes the form f (x) =

l
i=1(α

∗

i −αi)(xi ·x)+b,
where (xi · x) is the inner product.

In 2002, Bofinger, Luig, and Beyer (2002) found that the output
ofwind turbine systems is limited between zero and themaximum
power and the error statistics do not follow a normal distribution.
In 2005, Fabbri, Román, Abbad, and Quezada (2005) believed that
the normalized produced power p must be within the interval
[0, 1] and the beta function ismore appropriate to fit the error than
the standard normal distribution function. Bludszuweit, Antonio,
and Llombart (2008) showed the advantages of using the beta
probability distribution function (PDF), instead of the Gaussian
PDF, for approximating the forecast error distribution. The error ϵ
between the predicted values xp and themeasured values xm obeys
the beta distribution in the forecast ofwind power, and the PDF of ϵ
is f (ϵ) = ϵm−1

·(1−ϵ)n−1
·h, ϵ ∈ (0, 1), the parametersm and n are

often called hyperparameters because they control the distribution
of the variable ϵ (m > 1, n > 1), h is the normalization factor
and parametersm and n are determined by the values of the mean
(which is the predicted power) and the standard deviation (Bishop,
2006; Canavos, 1984). Fig. 1 shows plots of Gaussian distribution
and the beta distribution for different values of hyperparameters.
In 2007, Zhang, Wan, Zhao, and Yang (2007) and Randazzo, Abou-
Khousa, Pastorino, and Zoughi (2007) presented the estimation
results under a Laplacian noise environment in the direction-of-
arrival of coherent electromagnetic waves impinging estimation
problem. Laplace distribution is frequently encountered in various
machine learning areas, e.g., the over-complete wavelet transform
coefficients of images, processing in Natural images, etc. (Eltoft,
Kim, & Lee, 2006; Park & Lee, 2005).

Based on the above analysis, we know that the error distribu-
tions do not satisfy Gaussian distribution in some real-world ap-
plications. We try to study the optimal loss functions for different
error models.

It is not suitable to apply the GN-SVR to fit functions from data
with non-Gaussian noise. In order to solve the above problems,
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