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a b s t r a c t

We propose a unified machine learning model (UMLM) for two-class classification, regression and outlier
(or novelty) detection via a robust optimization approach. The model embraces various machine learning
models such as support vectormachine-based andminimax probabilitymachine-based classification and
regression models. The unified framework makes it possible to compare and contrast existing learning
models and to explain their differences and similarities.

In this paper, after relating existing learning models to UMLM, we show some theoretical properties
for UMLM. Concretely, we show an interpretation of UMLM as minimizing a well-known financial risk
measure (worst-case value-at risk (VaR) or conditional VaR), derive generalization bounds for UMLM
using such a risk measure, and prove that solving problems of UMLM leads to estimators with the
minimized generalization bounds. Those theoretical properties are applicable to related existing learning
models.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Classification and regression are widely studied topics in ma-
chine learning and artificial intelligence, and various new learning
models have been proposed so far. However, there are few works
providing a unified framework to such independently derived
learning models in one formulation and investigating the gener-
alization performance altogether. The unified framework makes it
possible to compare and contrast existing learning models and to
explain their differences and similarities, while individual formu-
lations for each model may be helpful when developing efficient
algorithms.

We propose a unifiedmachine learningmodel (UMLM) for two-
class classification, regression and outlier (or novelty) detection.
The model is formulated via the robust optimization approach
(Ben-Tal, El Ghaoui, & Nemirovski, 2009). Robust optimization is
an approach for modeling an optimization problem with uncer-
tain data varying in a given set and for finding decisions with the
best worst-case performance under such uncertainty. There are
several applications of robust optimization to two-class classifi-
cation. Some of them such as Trafalis and Gilbert (2006) and Xu,
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Caramanis, and Mannor (2009) dealt with uncertainties of obser-
vations by assuming bounded uncertainties for each of input sam-
ples. Other works such as Lanckriet, El Ghaoui, Bhattacharyya, and
Jordan (2002) and Shivaswamy, Bhattacharyya, and Smola (2006)
handled the issue of robustness with respect to estimation er-
rors (in the means and covariances of the classes) for the class-
conditional distributions by using robust optimization techniques.

Our model, UMLM, is formulated in the same line as a unified
robust classification model (RCM) proposed by Takeda, Mitsugi, and
Kanamori (2012). Takeda et al. (2012) considered a different setup
from the above methods for applying robust optimization to two-
class classification. Let x+ and x− be representative points of each
class (for example, means or medians of the data points). Assume
that x+ and x− are uncertain and that they have confidence inter-
vals (so-called uncertainty sets) U+ and U−, respectively. RCM is
formulated based on robust optimization as

max
w:∥w∥2=1

min
x+∈U+,x−∈U−

(x+ − x−)⊤w,

or equivalently,

min
w:∥w∥2=1

max
x∈U

−x⊤w, (1)

where ∥ · ∥2 is the Euclidean norm, and U is the Minkowski differ-
ence of U+ and U−, i.e.,

U = U+ ⊖ U− := {x+ − x− | x+ ∈ U+, x− ∈ U−}.

http://dx.doi.org/10.1016/j.neunet.2014.05.006
0893-6080/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2014.05.006
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2014.05.006&domain=pdf
mailto:takeda@mist.i.u-tokyo.ac.jp
mailto:kanamori@is.nagoya-u.ac.jp
http://dx.doi.org/10.1016/j.neunet.2014.05.006


30 A. Takeda, T. Kanamori / Neural Networks 57 (2014) 29–38

Table 1
Correspondence with existing models. Each cell shows the corresponding two-class classifier, one-class classifier and regressor. ‘‘—’’ indicates that the case does not happen
and the connected cell of (i) implies that two cases with K = 1 and K = 2 give the same learning model. The colored background indicates that the corresponding models
have an interpretation from financial risk-measure viewpoints. Let M := {1, . . . ,m} and M := {m + 1, . . . , 2m}. The variable v can include b and/or 1 in addition to w (w
can also consist of two subvectors: w1,w2). ϕ is for V of (3) in UMLM (2). η and L are inputs for a reduced convex hull (RCH) of (9), and K , z̄k and Σk, k = 1, . . . , K , are
inputs for an ellipsoidal set of (11).
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RCH (η =
1

νm )

(a) Eν-SVC(Perez-Cruz et al., 2003), ν-SVC
(Schölkopf et al., 2000)

(c) OC-ν-SVC (Schölkopf et al., 2001) (e) ν-SVR (Schölkopf et al., 2000)
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(g) FDA (Fukunaga, 1990), FS-FD
(Bhattacharyya, 2004)

(h) OC-MPM (Lanckriet et al., 2003) (i) MPM regression (Strohmann & Grudic, 2002)
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(f) MPM (Lanckriet et al., 2002), MM-MPM
(Nath & Bhattacharyya, 2007)
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When U+ and U− are convex sets and have interior points, their
Minkowski difference U is convex and has a nonempty interior.
Takeda et al. (2012) showed several examples ofU+ andU−, lead-
ing to existing learning models.

In this paper, we propose a unified formulation, UMLM, similar
to (1) not only for two-class classification but for regression and
outlier detection, and relate existing learningmodels toUMLM.We
show financial risk interpretation and generalization performance
for UMLM, which are also applicable to related existing learning
models. The purpose of this paper is as follows:

• to present a unified machine learning model (UMLM) not only
for two-class classification but also for regression and outlier
detection,

• to show an interpretation of UMLM as minimizing a well-
known financial risk, worst-case value-at risk (VaR) or condi-
tional VaR, and

• to derive generalization bounds for UMLM using financial
risk measures and show that minimizing such risk measures,
i.e., solving problems of UMLM, leads to estimators with the
minimized generalization bounds.

The unified framework of UMLM makes it possible to find new
models by examining the differences and similarities of existing
models, though we focus on theoretical analysis of UMLM in this
paper.

For Eν-support vector classification (SVC) (Perez-Cruz, We-
ston, Hermann, & Schölkopf, 2003), ν-SVC (Schölkopf, Smola,
Williamson, & Bartlett, 2000) and ν-support vector regression
(SVR) (Schölkopf et al., 2000) (i.e., existing models shown by col-
ored background in Table 1), our previous studies (Takeda, Gotoh,
& Sugiyama, 2010; Takeda & Sugiyama, 2008) showed their gener-
alization bounds in addition to their interpretations of minimizing

financial risk measures. This paper shows that UMLM admits simi-
lar generalization bound analysis and interpretations based on risk
measures. Below, we summarize UMLM-based description of ex-
isting learning models shown in the paper.

Two-class classification: besides ν-SVC and Eν-SVC,we show that
two-class L2-SVC (Tsang, Kwok, & Cheung, 2005), Fisher’s
discriminant analysis (FDA) (Fukunaga, 1990), and mini-
max probability machine (MPM) (Lanckriet et al., 2002)
are related to UMLM when uncertainty sets are prop-
erly chosen. Their variants using the maximum margin
criterion such as maximum-margin MPM (Nath & Bhat-
tacharyya, 2007) are also presented as a sort of UMLM.

One-class classification: one-class (OC) classificationmethods are
used for outlier detection, and it is closely related to the
standard two-class classification. OC-ν-SVC (Schölkopf,
Platt, Shawe-Taylor, Smola, & Williamson, 2001), OC
L2-SVC (Tsang et al., 2005) and OC-MPM (Lanckriet, El
Ghaoui, & Jordan, 2003) correspond to one-class variant
of ν-SVC, L2-SVC, andMPM, respectively.We show that a
modification of UMLMs of two-class classification meth-
ods immediately yields these learning methods.

Regression: in regression problems, the main task is to predict
real-valued outputs for given multi-dimensional input
vectors, and numerous number of works on statistical in-
ference of regression problems have been published so
far. In machine learning community, two-class classifiers
such as ν-SVC and MPM are often employed to regres-
sion problems by replacing themargin losswith the other
penalty on residuals to model fit. We show that ν-SVR
(Schölkopf et al., 2000) and MPM regression (Strohmann
& Grudic, 2002) are derived from UMLM by choosing ap-
propriate uncertainty sets. Besides the above learning
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