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a b s t r a c t

Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering
algorithm. In this paper, we propose a novel semi-supervised clustering algorithm based on the
information-maximization principle. The proposed method is an extension of a previous unsupervised
information-maximization clustering algorithm based on squared-loss mutual information to effectively
incorporate must-links and cannot-links. The proposed method is computationally efficient because
the clustering solution can be obtained analytically via eigendecomposition. Furthermore, the proposed
method allows systematic optimization of tuning parameters such as the kernelwidth, given the degree of
belief in themust-links and cannot-links. The usefulness of the proposedmethod is demonstrated through
experiments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of clustering is to classify unlabeled data into
disjoint groups based on their similarity, and clustering has been
extensively studied in statistics and machine learning. K -means
(MacQueen, 1967) is a classic algorithm that clusters data so
that the sum of within-cluster scatters is minimized. However,
its usefulness is rather limited in practice because k-means only
produces linearly separated clusters. Kernel k-means (Girolami,
2002) overcomes this limitation by performing k-means in a
feature space induced by a reproducing kernel function (Schölkopf
& Smola, 2002). Spectral clustering (Ng, Jordan, & Weiss, 2002; Shi
& Malik, 2000) first unfolds non-linear data manifolds based on
sample–sample similarity by a spectral embedding method, and
then performs k-means in the embedded space.

These non-linear clustering techniques are capable of han-
dling highly complex real-world data. However, they lack objec-
tive model selection strategies, i.e., tuning parameters included
in kernel functions or similarity measures need to be manually
determined in an unsupervised manner. Information-maximization
clustering can address the issue of model selection (Agakov &
Barber, 2006; Gomes, Krause, & Perona, 2010; Sugiyama, Niu,
Yamada, Kimura, & Hachiya, 2014), which learns a probabilistic
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classifier so that some information measure between feature vec-
tors and cluster assignments is maximized in an unsupervised
manner. In the information-maximization approach, tuning pa-
rameters included in kernel functions or similarity measures
can be systematically determined based on the information-
maximization principle. Among the information-maximization
clustering methods, the algorithm based on squared-loss mutual
information (SMI) was demonstrated to be promising (Sugiyama,
2013; Sugiyama et al., 2014), because it gives the clustering solu-
tion analytically via eigendecomposition.

In practical situations, additional side information regarding
clustering solutions is often provided, typically in the formofmust-
links and cannot-links: A set of sample pairs which should belong
to the same cluster and a set of sample pairs which should belong
to different clusters, respectively. Such semi-supervised clustering
(which is also known as clustering with side information) has
been shown to be useful in practice (Goldberg, 2007; Wagstaff &
Cardie, 2000; Wagstaff, Cardie, Rogers, & Schrödl, 2001). Spectral
learning (Kamvar, Klein, & Manning, 2003) is a semi-supervised
extension of spectral clustering that enhances the similarity with
side information so that sample pairs tied with must-links have
higher similarity and sample pairs tied with cannot-links have
lower similarity. On the other hand, constrained spectral clustering
(Wang & Davidson, 2010) incorporates the must-links and cannot-
links as constraints in the optimization problem.

However, in the same way as unsupervised clustering, the
above semi-supervised clustering methods suffer from lack of
objective model selection strategies and thus tuning parameters
included in similarity measures need to be determined manually.
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In this paper, we extend the unsupervised SMI-based clustering
method to the semi-supervised clustering scenario. The proposed
method, called semi-supervised SMI-based clustering (3SMIC), gives
the clustering solution analytically via eigendecomposition with a
systematicmodel selection strategy. Through experiments on real-
world datasets, we demonstrate the usefulness of the proposed
3SMIC algorithm.

2. Information-maximization clusteringwith squared-lossmu-
tual information

In this section, we formulate the problem of information-
maximization clustering and review an existing unsupervised
clustering method based on squared-loss mutual information.

2.1. Information-maximization clustering

The goal of unsupervised clustering is to assign class labels to
data instances so that similar instances share the same label and
dissimilar instances have different labels. Let {xi|xi ∈ Rd

}
n
i=1 be

feature vectors of data instances, which are drawn independently
from a probability distribution with density p∗(x). Let {yi|yi ∈
{1, . . . , c}}ni=1 be class labels that we want to obtain, where c
denotes the number of classes and we assume c to be known
through the paper.

The information-maximization approach tries to learn the
class-posterior probability p∗(y|x) in an unsupervised manner so
that some ‘‘information’’ measure between feature x and label y is
maximized. Mutual information (MI) (Shannon, 1948) is a typical
information measure for this purpose (Agakov & Barber, 2006;
Gomes et al., 2010):

MI :=
 c

y=1

p∗(x, y) log
p∗(x, y)

p∗(x)p∗(y)
dx. (1)

An advantage of the information-maximization formulation is that
tuning parameters included in clustering algorithms such as the
Gaussian width and the regularization parameter can be objec-
tively optimized based on the same information-maximization
principle. However, MI is known to be sensitive to outliers (Basu,
Harris, Hjort, & Jones, 1998), due to the log function that is strongly
non-linear. Furthermore, unsupervised learning of class-posterior
probability p∗(y|x) under MI is highly non-convex and finding a
good local optimum is not straightforward in practice (Gomes et al.,
2010).

To cope with this problem, an alternative information measure
called squared-loss MI (SMI) has been introduced (Sugiyama, 2013;
Suzuki, Sugiyama, Kanamori, & Sese, 2009):

SMI :=
1
2

 c
y=1

p∗(x)p∗(y)


p∗(x, y)
p∗(x)p∗(y)

− 1
2

dx. (2)

Ordinary MI is the Kullback–Leibler (KL) divergence (Kullback &
Leibler, 1951) from p∗(x, y) to p∗(x)p∗(y), while SMI is the Pearson
(PE) divergence (Pearson, 1900). Both KL and PE divergences belong
to the class of the Ali–Silvey–Csiszár divergences (Ali & Silvey, 1966;
Csiszár, 1967), which is also known as the f -divergences. Thus, MI
and SMI share many common properties, for example, they are
non-negative and equal to zero if and only if feature vector x and
label y are statistically independent. Information-maximization
clustering based on SMI was shown to be computationally advan-
tageous (Sugiyama et al., 2014). Below, we review the SMI-based
clustering (SMIC) algorithm.

2.2. SMI-based clustering

In unsupervised clustering, it is not straightforward to approx-
imate SMI (2) because labeled samples are not available. To cope
with this problem, let us expand the squared term in Eq. (2). Then
SMI can be expressed as

SMI =
1
2

 c
y=1

p∗(x)p∗(y)


p∗(x, y)
p∗(x)p∗(y)

2

dx

−

 c
y=1

p∗(x)p∗(y)
p∗(x, y)

p∗(x)p∗(y)
dx+

1
2

=
1
2

 c
y=1

p∗(y|x)p∗(x)
p∗(y|x)
p∗(y)

dx−
1
2
. (3)

Suppose that the class-prior probability p∗(y) is uniform, i.e.,

p(y) =
1
c

for y = 1, . . . , c.

Then we can express Eq. (3) as

c
2

 c
y=1

p∗(y|x)p∗(x)p∗(y|x)dx−
1
2
. (4)

Let us approximate the class-posterior probability p∗(y|x) by
the following kernel model:

p(y|x;α) :=

n
i=1

αy,iK(x, xi), (5)

where α = (α1,1, . . . , αc,n)
⊤
∈ Rcn is the parameter vector, ⊤

denotes the transpose, andK(x, x′) denotes a kernel function. LetK
be the kernel matrix whose (i, j) element is given by K(xi, xj) and
let αy = (αy,1, . . . , αy,n)

⊤
∈ Rn. Approximating the expectation

over p∗(x) in Eq. (4) with the empirical average of samples {xi}ni=1
and replacing the class-posterior probability p∗(y|x) with the
kernel model p(y|x;α), we have the following SMI approximator:

SMI :=
c
2n

c
y=1

α⊤y K
2αy −

1
2
. (6)

Under orthonormality of {αy}
c
y=1, a global maximizer is given

by the normalized eigenvectors φ1, . . . ,φc associated with the
eigenvalues λ1 ≥ · · · ≥ λn ≥ 0 of K . Because the sign of
eigenvector φy is arbitrary, we set the sign asφy = φy × sign(φ⊤y 1n),

where sign(·) denotes the sign of a scalar and 1n denotes the n-
dimensional vector with all ones. On the other hand, since

p∗(y) =


p∗(y|x)p∗(x)dx ≈
1
n

n
i=1

p(y|xi;α) = α⊤y K1n,

and the class-prior probability was set to be uniform, we have the
following normalization condition:

α⊤y K1n =
1
c
.

Furthermore, negative outputs are rounded up to zero to ensure
that outputs are non-negative.

Taking these post-processing issues into account, cluster as-
signment yi for xi is determined as the maximizer of the approx-
imation of p(y|xi):

yi = argmax
y

[max(0n,Kφy)]i

c max(0n,Kφy)
⊤1n
= argmax

y

[max(0n,φy)]i

max(0n,φy)
⊤1n

,
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