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a b s t r a c t

The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-
basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have
fixed widths but varying centers. The effect of width on functional equivalence, universal approxima-
tion property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven
that if two Gaussian RBF networks have the same input–output functions, then they must have the same
numbers of units with the same centers and widths. Further, it is shown that while sets of input–output
functions of Gaussian kernel networkswith twodifferentwidths are disjoint, each such set is large enough
to be a universal approximator. Embedding of RKHSs induced by ‘‘flatter’’ Gaussians into RKHSs induced
by ‘‘sharper’’ Gaussians is described and growth of the ratios of norms on these spaces with increasing
input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input–output
functions of Gaussian RBFs are described.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Originally, artificial neural networks were built from biologi-
cally inspired computational units. These units, called perceptrons,
compute functions in the form of plane waves. As an alterna-
tive, computational units in the form of spherical or elliptic waves
were proposed mainly due to their good mathematical properties.
Broomhead and Lowe (1988) introduced radial-basis-functions
(RBFs) and Girosi and Poggio (1990) proposed more general ker-
nel units. In particular, support vector machines (SVMs) built from
units defined by symmetric positive semidefinite kernels became
very popular (Cortes & Vapnik, 1995). Heaviside perceptrons cut
input spaces into two halfspaces, with values of outputs equal to 0
on one half-space and 1 on the other, and so they are highly non-
local. RBFs are geometrically opposite; they assign values close to
0 outside of spherical areas around their centers. Thus RBFs are lo-
calized.

Among localized computational units, a prominent position is
occupied by units induced by the Gaussian function. Radial-basis-
function units with the Gaussian radial function are themost com-
mon type of RBFs and Gaussian kernels with fixed widths are

∗ Corresponding author. Tel.: +420 266053231.
E-mail addresses: vera@cs.cas.cz (V. Kůrková), kainen@georgetown.edu

(P.C. Kainen).

typical symmetric positive definite kernels. Both these computa-
tional models, the one with Gaussian RBF units having variable
widths and the one with Gaussian units having fixed widths, have
their advantages. Arbitrarily small widths of Gaussian RBFs were
used in proofs of their universal approximation capability based
on classical results on convolutions with sequences of scaled ker-
nels (Park & Sandberg, 1991, 1993). Varying widths also play an
important role in learning algorithms (see, e.g., Benoudjit, Archam-
beau, Lendasse, Lee, & Verleysen, 2002; Kecman, 2001; Verleysen
& Hlaváčková, 1996; Wallace, Tsapatsoulis, & Kollias, 2005) and in
some estimates of rates of approximation by Gaussian RBFs (see,
e.g., Girosi, 1994; Girosi &Anzellotti, 1993; Kainen, Kůrková, & San-
guineti, 2009; Mhaskar, 2004). On the other hand, fixing the width
allows one to fix the geometrical structure of a Hilbert space and
apply the maximal margin classification algorithm (SVM) (Cortes
& Vapnik, 1995). It also enables characterization of theoretically
optimal solutions of learning tasks and modeling of generalization
(see, e.g., Cucker & Smale, 2002; Girosi, 1998; Girosi, Jones, & Pog-
gio, 1995; Kůrková, 2013; Poggio & Smale, 2003).

Some comparisons of capabilities of Gaussian networks with
fixed and varying widths were obtained by Schmitt (2002) for the
special case of input dimension equal to one. He proved that a
Gaussian kernel network with a fixed width computing the same
one-variable input–output function as a Gaussian RBF network
with varying widths must be at least a factor of 1.5 larger.

In this paper, we investigate the role of widths of Gaussian
functions in computational models which they generate. First, we
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show that if input–output functions of two Gaussian RBF networks
are equal, then the networks must have the same numbers of
units and the same output weights, centers, and widths (up to
a permutation of hidden units). This implies that possibilities of
compressions of parameter spaces of Gaussian RBF networks are
limited to equivalences induced by permutations. Our result holds
for any input dimension d and any open domain in Rd. Its proof
takes advantage of the analyticity of the Gaussian function and
properties of complex functions.

Further, we show that although sets of input–output functions
of Gaussian kernel networkswith two differentwidths are disjoint,
each such set is large enough to be a universal approximator. In
proving the density of Gaussian kernel networks,weuse properties
of Fourier transform of the Gaussian as an alternative to arguments
of Mhaskar (1995), which are based on the form of derivatives
of the Gaussian, and of Steinwart and Christmann (2008, p. 155),
who use the Taylor series. Thus our results show that while no in-
put–output function of a Gaussian RBF network whose units have
at least two different widths can be exactly computed by a Gaus-
sian kernel network with fixed width, each such function can be
approximated with any required accuracy by Gaussian kernel net-
works having a given fixed width.

We also investigate how growth in the ratios of stabilizers in-
duced by Gaussian kernels with two different widths depends on
the input dimension. Finally, we describe multiple minima of em-
pirical error functionals over sets of input–output functions com-
putable by Gaussian RBFs. Some preliminary results appeared in
the regional conference proceedings (Kůrková, 2013).

The paper is organized as follows. In Section 2, notations and
basic concepts on one-hidden-layer RBF and kernel networks are
introduced. In Section 3, it is shown that for two different widths,
Gaussian kernel networks are not functionally equivalent. Sec-
tion 4 shows that Gaussian kernel networks with fixed width are
universal approximators. In Section 5, it is shown that the ratio of
stabilizers with two different widths grows exponentially with in-
creasing input dimension. Section 6 concludes the paper.

2. Dictionaries and kernels

The most widespread computational model used in neurocom-
puting is a one-hidden-layer network with one linear output unit.
Such networks compute linear combinations of functions com-
putable by a given type of computational units. The coefficients of
linear combinations are called output weights and sets of functions
computable by various types of units are called dictionaries. Net-
works with n units from a dictionary G compute functions from
the set

spann G :=


n

i=1

wigi | wi ∈ R, gi ∈ G


.

The set of input–output functions of networks with any number of
hidden units is denoted

spanG :=

∞
n=1

spann G =


n

i=1

wigi | wi ∈ R, gi ∈ G, n ∈ N+


,

where N+ denotes the set of positive integers.
Typically, dictionaries are given as parameterized families of

functions. Let K : X × Y → R be a function of two variables
representing an input vector x ∈ X ⊆ Rd and a parameter vector
y ∈ Y ⊆ Rs. We denote by

GK (X, Y ) := {K(., y) : X → R | y ∈ Y } ,

the dictionary of computational units computingK .WhenY is clear
from the context, we write shortly GK (X) (for symmetric kernels,
X = Y ).

In mathematics, various functions of two variables are called
kernels (from the German term ‘‘kern’’, introduced by Hilbert in the
context of theory of integral operators (Pietsch, 1987, p. 291)). In
neurocomputing and learning theory, the term kernel is often re-
served for a symmetric positive semidefinite function. This is a ker-
nel K : X × Y → R such that X = Y , K(x, y) = K(y, x) for all x,
y ∈ X and for any positive integer m, any x1, . . . , xm ∈ X , and any
a1, . . . , am ∈ R,
m
i=1

m
j=1

aiajK(xi, xj) ≥ 0.

For symmetric positive semidefinite kernels K , the sets spanGK (X)
of input–output functions of networks with units induced by the
kernel K are contained in Hilbert spaces defined by these kernels.
Such spaces are called reproducing kernel Hilbert spaces (RKHSs)
and denoted HK (X). These spaces are formed by functions from
spanGK (X) togetherwith limits of their Cauchy sequenceswith re-
spect to the norm ∥·∥K , so spanGK (X) ⊂ HK (X). Usually, elements
of GK (X) are denoted

Kx(·) := K(x, .).

The norm ∥ · ∥K is induced by the inner product ⟨·, ·⟩K , which is
defined on GK (X) = {Kx | x ∈ X} as

⟨Kx, Ky⟩K := K(x, y).

In this paper, we focus on dictionaries of three types defined
in terms of the Gaussian function. The first one, GFd(X) is induced
by the nonsymmetric function Fd : X × Y → R (where X ⊆ Rd,
Y = R+ × Rd, and R+ denotes the set of positive real numbers)
defined for every x ∈ X and (a, c) = (a, c1, . . . , cd) ∈ R+ × Rd as

Fd(x, (a, c)) := e−∥a(x−c)∥2 .

So

GFd(X) :=

Fd(., (a, c)) : X → R | a > 0, c ∈ Rd .

We call networks from the set spanGFd(X) Gaussian RBF networks
to distinguish them from Gaussian kernel networks which are in-
duced by dictionaries GKa

d
(X) defined for each fixed a > 0 corre-

sponding to width 1
a as

GKa
d
(X) :=


K a
d (., c) : X → R | c ∈ Rd ,

where K a
d : X × Rd

→ R satisfies for every x ∈ X and c ∈ Rd

K a
d (x, c) := e−∥a(x−c)∥2 .

So GKa
d
(X) consists of functions on X computable by units induced

by the d-variable Gaussian with a fixed width 1
a . Thus we can ex-

press the dictionary GFd(X) as the union of the dictionaries GKa
d
(X),

i.e.,

GFd(X) :=


a∈R+

GKa
d
(X).

We also consider the dictionary GLd(X) induced by anisotropic
elliptic Gaussian units with widths varying in each coordinate,
where the kernel Ld : X × Rd

+
× Rd

→ R is defined for each x =

(x1, . . . , xd) ∈ X , a = (a1, . . . , ad) ∈ Rd
+
, and c = (c1, . . . , cd) ∈

Rd as

Ld(x, (a, c)) := e−
d

i=1(ai(xi−ci))2 .

So

GLd(X) :=

Ld(., (a, c)) : X → R | a ∈ Rd

+
, c ∈ Rd .
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