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a b s t r a c t

We extend the notion of Synchronization of memristor-based recurrent neural networks with two de-
lay components based on second-order reciprocally convex approach. Some sufficient conditions are
obtained to guarantee the synchronization of the memristor-based recurrent neural networks via delay-
dependent output feedback controller in terms of linear matrix inequalities (LMIs). The activation func-
tions are assumed to be of further common descriptions, which take a broad view and recover many of
those existingmethods. A Lyapunov–Krasovskii functional (LKF)with triple-integral terms is addressed in
this paper to condense conservatism in the synchronization of systemswith additive time-varying delays.
Jensen’s inequality is applied in partitioning the double integral terms in the derivation of LMIs and then
a new kind of linear combination of positive functions weighted by the inverses of squared convex pa-
rameters has emerged. Meanwhile, this paper puts forward a well-organized method to manipulate such
a combination by extending the lower bound lemma. The obtained conditions not only have less conser-
vatism but also less decision variables than existing results. Finally, numerical results and its simulations
are given to show the effectiveness of the proposed memristor-based synchronization control scheme.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pecora and Carroll declared a pioneering work on synchroniza-
tion control of chaotic systems in the precedent years (Carroll &
Pecora, 1991; Pecora & Carroll, 1990). They introduced a method
to synchronize two identical chaotic systems with different ini-
tial conditions. Enormous efforts were guided to build up the new
chaotic system (Pan, Zhou, & Fang, 2010) and propose assortment
of methods to accomplish chaos control and synchronization for
chaotic systems and chaotic neural networks (Liu, 2009) during
the past two decades. Recently, the synchronization of chaotic
neural networks has been intensively investigated due to their
potential application in technological practice, such as secure com-
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munication (Liao & Tsai, 2001), image processing (Perez-Munuzuri,
Perez-Villar, & Chua, 1993), harmonic oscillation generation and
also exhibits synchronization in language emergence and de-
velopment, which comes up with a common vocabulary, while
agent’s synchronization in association management will improve
their work effectively. On the other hand, the synchronization
in coupled identical delayed neural networks has been shown to
have an important impact on the fundamental science (e.g., the
self-organization behavior in the brain). In current years, the syn-
chronization analysis for the complex networks which creates dis-
similar kind of Neural Networks (NNs) has come into view as a
research topic of primary significance. Research on synchroniza-
tion control of chaotic systems has gained considerable attention
in recent years due to their strong background in applications. For
this reason, it has a wider importance to study the synchronization
of chaotic NNs that has been proposed in the following literature:
(see Balasubramaniam, Chandran, & Theesar, 2011; Cao, Alofi, Al-
Mazrooei, & Elaiw, 2013; Cao, Chen, & Li, 2008; Cao & Li, 2009; Cao,
Wang, & Sun, 2007; Gan, Xu, & Kang, 2011; Sun, Wang, Wang, &
Cao, 2010; Zhu & Cao, 2012).
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Fig. 1. The relation between four fundamental elements.

The utilization of time delay in the feedback loop eradicates
the need for unambiguously determining some information about
the fundamental dynamics other than the period of the desired
orbit. In various applications, the fascinating problem is to design
a memory less state-feedback controller u(t) = K1e(t), (se Cheng,
Liao, & Hwang, 2005; Gao, Zhong, & Gao, 2009). Moreover, it
has now been well realized that time delays always influence
the dynamic properties of delayed chaotic NNs, which may cause
periodic oscillations, bifurcation and chaotic attractors and so on.
Therefore, time delays should be modeled in order to simulate
more realistic networks. Thus if the information on the dimension
of the time-varying delay τ(t) is available, then a delayed feedback
controller of the form: u(t) = K1e(t) + K2e(t − τ(t)) has been
considered in the literature (see Li, Fei, Zhu, & Cong, 2008). In
addition, an exceptional case where the information on the size of
the time-varying delays τ(t), ρ(t) is accessible, we also consider a
delayed feedback controller of the form: u(t) = K1e(t) + K2e(t −

τ(t)) + K3e(t − ρ(t)), (see Song, 2009). Therefore, the more
common form of a delayed feedback controller is u(t) = K1e(t) +

K2
 t
t−τ(t) e(s)ds (see Park & Kwon, 2006; Yu & Cao, 2007). But in

many real network papers only output signals can be measured
(see Li & Bohner, 2010; Li, Ding, & Zhu, 2010) and it is of the form:
u(t) = K1(f (y(t))− f (x(t)))+K2(f (y(t − τ(t)))− f (x(t − τ(t)))).
Motivated by the above discussion, in this paper we include
distributed delay in the delayed output feedback controller and the
controller takes the form u(t) = K1(f (y(t))− f (x(t)))+K2(f (y(t−
τ1(t) − τ2(t))) − f (x(t − τ1(t) − τ2(t)))) + K3

 t
t−ρ(t)(f (y(s)) −

f (x(s)))ds in the slave system, where K1, K2, K3 ∈ Rn×n constant
gain matrices. The survival of memristor which describes the
relationship between electric charge and magnetic flux was
predicted in 1971 by Chua (1971). The memristive functionality
is not a distinctive property of two-terminal passive devices but
essentially a memory effect related to internal state variable
changes. This symmetry follows from the depiction of basic passive
circuit elements as defined by a relation between two of the four
fundamental circuit variables, namely voltage, current, charge and
flux. A device linking charge and flux (themselves defined as time
integrals of current and voltage), which would be the memristor,
was still hypothetical at the time is clearly depicted in Fig. 1.
Furthermore, theirmicroscopically adapted internal state is simply
measured as an external two-terminal resistance. Memristors
were originally defined as components that relate charge and
magnetic flux, but they can be further usefully described as
devices with a pinched-hysteresis loop whose size is frequency
dependent. This new circuit element will be helpful for low-power
computation and storage to store information and data without
the need of power (Ventra, Pershin, & Chua, 2009). In this way,

Fig. 2. Delays in networked control system.

the memristor remembers information. From the previous works
(Bao & Zeng, 2013; Corinto, Ascoli, & Gilli, 2011; Itoh & Chua, 2008;
Pershin & Di Ventra, 2010; Strukov, Snider, Stewart, & Williams,
2008;Wu& Zeng, 2012a;Wu, Zeng, Zhu, & Zhang, 2011; Yang, Cao,
& Yu, 2014; Zhang, Shen, & Sun, 2012; Zhang, Shen, &Wang, 2013),
we know that the potential applications of this device is in next
generation computers and powerful brain-like neural computer.
Additionally, the scrutiny of thememristor-based recurrent neural
networks is able to disclose critical characteristics of the dynamics,
such as the occurrence of sliding modes along switching surfaces,
the chaos synchronization, and the ability to work out the
accurate globalminimumof the underlying energy function,which
make the networks specially attractive for the solution of global
optimization problems in real time.

The study of time-delay systems also called systems with after-
effect or dead-time, hereditary systems, equations with deviat-
ing argument or differential-difference equations has received
widespread consideration above the precedent years. While time-
delays are the most important origin of oscillation, divergence or
instability, substantial efforts have been made to stabilize the sys-
tems with time delays. In present years, a lot of efforts have been
endowed in the analysis of time-delay systems, such as delayed
stochastic system (Wang, Liu, & Liu, 2010), delayed BAM neural
networks (Cao & Wan, 2014), delayed stochastic genetic regula-
tory networks (Wang, Wang, & Liang, 2010), and delayed stochas-
tic complex networks (Wang, Wang, & Liang, 2009; Wang, Wang,
& Liu, 2010). Motivated by recent efforts on time-delay systems,
a new model for neural networks with two additive time-varying
delays has been measured in Shao and Han (2011) and Zhao, Gao,
and Mou (2008). We consider time-delays in the dynamical model
as ẋ(t) = Ax(t) + BKx(t − d1(t) − d2(t)) where, d1(t) is the time-
delay induced from sensor to controller and d2(t) is the delay in-
duced from controller to the actuator. Then, from the mathemat-
ics point of view, d1(t) and d2(t) are lumped as one delay d(t) =

d1(t)+d2(t), then the systembecomes ẋ(t) = Ax(t)+BKx(t−d(t)).
One simple example is shown in Fig. 2, which can easily explain the
concept of additive time-varying delays. In Fig. 2, itwill be seen that
there are basically three kinds of delays: τ sc is used to represent
the delay from sensor to controller, τ c is the computational delay,
and τ ca is the delay from controller to actuator. Because of this fea-
ture, extensive potential applications of additive time-varying de-
lays have been identified in the following literature (see Gao, Chen,
& Lam, 2008; Lam, Gao, &Wang, 2007, and the references therein).

In this paper, we make great efforts to investigate the synchro-
nization of memristor-based recurrent neural networks with two
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