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h i g h l i g h t s

• A learning theory based on the variational principle of least cognitive action.
• Supervised On-line Learning evolving as a dissipative dynamic system.
• Stochastic or Batch Gradient Descent are obtained by varying the dissipation level.
• Experimental evaluation on standard and custom benchmarks.
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a b s t r a c t

This paper analyzes the practical issues and reports some results on a theory inwhich learning ismodeled
as a continuous temporal process drivenby lawsdescribing the interactions of intelligent agentswith their
own environment. The classic regularization framework is paired with the idea of temporal manifolds by
introducing the principle of least cognitive action, which is inspired by the related principle of mechanics.
The introduction of the counterparts of the kinetic and potential energy leads to an interpretation of
learning as a dissipative process. As an example, we apply the theory to supervised learning in neural
networks and show that the corresponding Euler–Lagrange differential equations can be connected to the
classic gradient descent algorithm on the supervised pairs. We give preliminary experiments to confirm
the soundness of the theory.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In a seminal paper on regularization networks, Poggio and
Girosi (1989) provided a nice formulation of supervised learning
using differential operators. In the simplest case, the differential
operator P , used to define the regularization term, is the gradient,
but they considered a more general class of operators based also
on high-order derivatives. The proposed variational formulation
of learning was based on performing regularization in terms
of smoothness of the task f , so as they ended-up into the
Euler–Lagrange equation

P̂Pf (x) =
1
λ

N
i=1

(yi − f (x))δ(x − xi), (1)

where P̂ is the adjoint operator of P, (xi, yi), i = 1, . . . ,N are the
supervised examples, and λ is a settable parameter to balance the
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regularization with respect to the approximation accuracy on the
training set.1 Interestingly, this partial differential equation pro-
vides a very good framework to introduce kernel machines. In fact,
the Green function G(·, ·) of the linear operator L = P̂P , defined
as its response to the Dirac delta impulse (i.e. LG = δ), can be con-
sidered as a kernel (Gnecco, Gori, & Sanguineti, 2013; Schoelkopf &
Smola, 1998). As a consequence, the solution of the Euler–Lagrange
equation (1) can be written as the superposition of the responses
to Dirac delta impulses centered in the points of the training set
(i.e. G(x, xi)), which leads to the classic representer theorem of
kernel machines (Gnecco et al., 2013; Schoelkopf & Smola, 1998).
Needless to say, the related mathematical and algorithmic frame-
work has played a crucial role in the development of the field of
machine learning in the last twenty years.

Recently, Eq. (1) has been reformulated in a more general
framework inwhich, instead of dealingwith intelligent agents that
interact with the environment only by supervised examples, the
agent optimizes its behavior also to satisfy a given set of constraints

1 The equation is derived in the case of a quadratic loss function on the supervised
examples.
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(Gnecco, Gori, Melacci, & Sanguineti, 2015). New representer
theorems are given to express the optimal solution for a large class
of constraints. Some guidelines were given to parallel the plain
kernel-based solution of (1) with cases where special kernels arise
from the marriage of the regularization operators with the specific
constraints (see also Melacci & Gori, 2013). A classic example of
constraint studied in Gnecco et al. (2015) is the onewhich imposes
the brightness invariance in computer vision, which makes it
possible to estimate the optical flow (Horn & Schunck, 1981).
Interestingly, the kernel-based approaches used so far, along with
their mathematical apparatus, are clearly the only viable solution.
As a matter of fact, the differential equation (1), as well as the
related Euler–Lagrange equations derived in Gnecco et al. (2015),
cannot be tackled with an efficient numerical solution. They are
in fact formulated in the feature space, whose dimension makes
it unfeasible to grid the space for the classic discretization of the
differential operator2 L = P̂P . This fundamental computational
issue suggests that any biological system involved in learning
processes should obey to models which somehow circumvent the
curse of dimensionality related to Eq. (1).

This paper arises from the wish of facing this fundamental is-
sue.When shifting to natural learning processes, one can promptly
realize that the described formulations are essentially operating
according to batch-mode and, most importantly, they miss the
truly meaning of time. What if we shift towards a formulation in
which an intelligent agent lives in an environment that provides
constraints on a temporal basis? Unlike what is assumed in the
above formulation, the incoming points in the feature space be-
long to a certain temporal manifold (i.e. a trajectory in the feature
space), which is expected to drive the learning process. We fully
rely on the principle that there is no need to deal with the reac-
tion of the constraints and with the corresponding regularization
in high-dimensional feature spaces, since we can simply focus the
attention on the temporal manifold by approaching learning as a
continuous temporal process. Bearing in mind this principle, we
reformulate learning by introducing the principle of least cognitive
action. These concepts have been first proposed in Frandina, Gori,
Lippi,Maggini, andMelacci (2013),where it is shownhow this vari-
ational formulation of learning can be easily associated with the
classic technique of gradient descent in on-line back-propagation.
A solid theoretical formulation of the principle and the incorpora-
tion of the energy dissipation in the process has been given in Betti
andGori (2015). Thework is inspired to the related principle ofme-
chanics and to the Hamiltonian framework for modeling the mo-
tion of particles. Unlike mechanics, however, the cognitive action
that we define is in fact the objective to be minimized, more than
a functional for which to discover a stationary point. This duality is
based on a proper introduction of the ‘‘kinetic energy’’ and of the
‘‘potential energy’’, that leads to a surprisingly natural interpreta-
tion of learning as a dissipative process. The kinetic energy reflects
the temporal variation of the synaptic connections, while the po-
tential energy is a penalty that describes the degree of satisfaction
of the environmental constraints. The proposed approach to learn-
ing naturally incorporates time in its truly continuous structure,
so as the evolution of the weights of the neural synapses follows
equations that resemble laws of physics (see Table 1). The most
important conclusion is that the corresponding Euler–Lagrange
equations involve temporal functions, allowing us to circumvent
the mentioned curse of dimensionality issue. Hence, the proposed
theory makes it possible to formulate a sound learning process by
the direct solution of differential equations on a temporal mani-
fold, avoiding numerical approximations.

2 Methods like Runge–Kutta have a unmanageable complexity for the dimensions
of interest in machine learning.

We show the application of the theory to the classic case of
supervised learning in neural networks and give the first example
of a new learning algorithmderived from the theory.We showhow
to face practical issues and how the parameters of the proposed
model affect the learning process. Finally, we provide experiments
to support the soundness of the theory.

2. The principle of least cognitive action

We assume that the agent processes an input evolving in a
feature space in Rd, as expressed by a function of time u :

[t0, t1] → Rd, that is mapped to the output z ∈ Rm by means
of z(t) = f (w(t), u(t)). For now we do not impose any constraint
on the structure of f , that, for example, could be implemented by
a feedforward neural network, whose weights are stacked into the
vector w(t) at time t . The task is to learn the weights w(t) ∈ Rn

of the function f . We formulate the online learning process of the
agent by providing the constraints that define the interactionswith
the environment, according to the general framework defined in
Gnecco et al. (2015). A quite general case is the one in which the
tasks should satisfy the equation φ(f (w(t), u(t))) = 0, where
φ(·) ≥ 0 is the function modeling the constraints of the agent’s
environment. The fulfillment of the constraints during the learning
process can be enforced by the minimizing penalty

V (w) =

 t1

t0
φ(f (w(t), u(t)))dt. (2)

We can think of V as a potential energy connected with the con-
straint φ, such that the aim of learning is to develop configurations
with small potential. The classic case of supervised learning can be
incorporated into this framework when considering the Dirac dis-
tribution

φ(f (w(t), u(t))) =


tk≤t

V (yk, f (w(t), u(t))) · δ(t − tk) (3)

where V (y, s) is a loss function.3 Here supervisions are provided by
an external teacher at discrete time instants tk, k ∈ N, by specifying
a target value yk. The supervised pairs (u(tk), yk) are collected into
the set L = {(u(tk), yk)}k∈N and are provided while the agent’s
input u(t) evolves in time.

By following a parallelwith the classicalmechanics, theweights
w can be thought of as the Lagrangian coordinates in a virtual
mechanical system, whose kinetic energy is defined as K =n

i=1 µiẇ
2
i . The value µi, i = 1, . . . , n, represents the mass of the

particle associatedwithwi. Taking inspiration fromEq. (1), wemay
generalize the concept of velocity bymeans of differential operator

P =

ℓ
j=0

αj
dj

dt j
. (4)

The coefficientsαj of P are the regularizationweights related to the
correspondent order of derivative applied towi(t). The generalized
velocity turns out to be Pw and the correspondent kinetic energy is

K(Pw) =

n
i=1

µi(Pwi)
2. (5)

Now we can provide a formulation which resembles the principle
of least action in physics by defining the Lagrangian

F(t, w, Pw) = K(Pw)+ γ V (w), (6)

3 For instance, V (y, s) can be the quadratic loss V (y, s) =
1
2 (y − s)2 .
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