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a b s t r a c t

This paper investigates the stability problem for a class of impulsive complex-valued neural networks
with both asynchronous time-varying and continuously distributed delays. By employing the idea of
vector Lyapunov function, M-matrix theory and inequality technique, several sufficient conditions are
obtained to ensure the global exponential stability of equilibrium point. When the impulsive effects are
not considered, several sufficient conditions are also given to guarantee the existence, uniqueness and
global exponential stability of equilibrium point. Two examples are given to illustrate the effectiveness
and lower level of conservatism of the proposed criteria in comparison with some existing results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past three decades, neural networks had become a very
attractive research field, because of their applications in many
areas, for example, optoelectronics, imaging, remote sensing,
quantum neural devices and systems, spatiotemporal analysis of
physiological neural systems, artificial neural information process-
ing, and other areas (Zeng & Zheng, 2013). In implementation of
neural networks, because of finite switching speeds of the am-
plifiers, time delay is well-known to be unavoidable and it can
cause oscillations or instability in dynamic systems (Arik, 2014).
The stability as a very essential topic in neural networks with de-
lays has attracted increasing interest, for example, see Balasub-
ramaniam, Vembarasan, and Rakkiyappan (2012), Cao and Song
(2006), Chen (2001), Kwon, Park, Lee, and Cha (2014), Ozcan and
Arik (2014), Rakkiyappan, Sivasamy, Park, and Lee (2016) and ref-
erences therein.
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As applications of the neural networks spread more widely,
developing neural network models which can deal with complex
numbers is desired in various fields. Several models of complex-
valued neural networks have been proposed and their abilities of
information processing have been investigated (Hirose, 1992). Re-
search has shown that complex-valued neural networks (CVNNs)
make it possible to solve some problems which cannot be solved
with their real-valued counterparts. For example, the XOR prob-
lem and the detection of symmetry problem cannot be solvedwith
a single real-valued neuron, but they can be solved with a single
complex-valued neuron with the orthogonal decision boundaries,
which reveals the potent computational power of complex-valued
neurons (Jankowski, Lozowski, & Zurada, 1996).

For CVNNs, the main task is to find a suitable activation
function in a variety of complex functions. In real-valued neural
networks the activation functions are chosen to be smooth and
bounded generally. However, the smooth and bounded functions
cannot be chosen as activation functions of CVNNs according to
Liouville’s theorem since they will reduce to constants. Recently,
there have been some researches on the stability of various
CVNNs, for example, see Chen and Song (2013), Fang and Sun
(2014), Gong, Liang, and Cao (2015a, 2015b), Hu and Wang (2012,
2015), Jankowski et al. (1996), Lee (2001), Liu and Chen (2016),
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Pan, Liu, and Xie (2015), Rakkiyappan, Velmurugan, and Cao
(2015), Rakkiyappan, Velmurugan, and Li (2015), Rao and Murthy
(2008), Song and Zhao (2016), Song, Zhao, and Liu (2015a, 2015b),
Velmurugan, Rakkiyappan, and Cao (2015), Xu, Zhang, and Shi
(2014), Zhang, Lin, and Chen (2014), Zhang and Yu (2016), Zhou
and Song (2013), Zhou and Zurada (2009), and references therein.
In Jankowski et al. (1996), authors proposed a CVNNs and supposed
that its weight matrix was Hermitian with nonnegative diagonal
entries in order to preserve the stability of the network. Then
the assumption of weight matrix in Jankowski et al. (1996) was
weakened by Lee (2001). In Fang and Sun (2014), Hu and Wang
(2012), Zhang et al. (2014), Zhang andYu (2016) and Zhou and Song
(2013), the researchers investigated the asymptotical stability and
exponential stability of CVNNs with constant delay. The CVNNs
with time-varying delays were considered and some sufficient
conditions for stability of a unique equilibrium were derived
by Gong et al. (2015a, 2015b), Pan et al. (2015), Rakkiyappan,
Velmurugan, and Cao (2015), Velmurugan et al. (2015). Based on
delta differential operator, Chen and Song (2013) and Song and
Zhao (2016) investigated the stability problem for a class of CVNNs
with both leakage delay and time-varying delays on time scales.
In Song et al. (2015a), a CVNNs model with probabilistic time-
varying delays was established, and several sufficient conditions
guaranteeing the global asymptotic and exponential stability of
model were acquired. In Xu et al. (2014), the exponential stability
of CVNNs with mixed delays was discussed. Hu and Wang (2015),
Rao and Murthy (2008), Song et al. (2015b) and Zhou and
Zurada (2009) also studied the stability of discrete-time CVNNs.
Furthermore, impulsive effect on stability of CVNNs with time
delayswas considered by Rakkiyappan, Velmurugan, and Li (2015).

As pointed out in Liu and Chen (2016), the interconnections are
generally asynchronous in practice, that is to say, the inevitable
time delays between different nodes are generally different. For
example, in order to model vehicular traffic flow (Bose & Ioannou,
2003; Helbing, 2001), the reaction delays of drivers should be
considered, and for different drivers, the reaction delays are
different depending on physical conditions, drivers’ cognitive and
physiological states. Moreover, in the load balancing problem
(Chiasson et al., 2005), for a computing network consisting
of n computers (also called nodes), except for the different
communication delays, the task-transfer delays τij also should be
considered, which depend on the number of tasks to be transferred
from node i to node j. Hence, based on the above discussions, it
is necessary to study the dynamical behavior of neural networks
with asynchronous timedelays. In Liu andChen (2016), the authors
first proposed a complex-valued recurrent neural network model
with asynchronous time delays, and presented several sufficient
conditions for the uniqueness and global exponential stability of
the equilibrium point by using three generalized norms.

It is well known that a neural network usually has a spatial
nature due to the presence of an amount of parallel pathways
of a variety of axon sizes and lengths, it is desired to model
themby introducing continuously distributed delays over a certain
duration of time such that the distant past has less influence
compared with the recent behavior of the state (Song & Cao,
2006). Today, both time-varying delays and distributed delays
have been widely accepted as important parameters associated
with neural networks models, for example, see Jiang, Zeng, and
Chen (2015), Song and Cao (2006), Wang, Liu, and Liu (2005)
and references therein. On the other hand, the impulsive effects
can be found in the similar way of time delay effect in the
neural networks, in which many sudden and sharp changes occur
instantaneously in the form of impulses in the particular neural
networks (Rakkiyappan, Velmurugan, & Li, 2015). The impulsive
perturbation of the neural networks can affect the dynamical
behaviors, same as time delays effect. Recently, increasing

attention has been focused on stability analysis of impulsive
complex-valued neural networks and complex-valued systems
with time delays, for example, see Rakkiyappan, Velmurugan, and
Li (2015), Song et al. (2015b), Zeng, Li, Huang, and He (2015).
However, to the best of the authors’ knowledge, there are very few
results on stability of impulsive CVNNs with both asynchronous
time-varying and continuously distributed delays. This motivates
our present research.

Motivated by the above discussions, the objective of this paper
is to study the stability of a class of impulsive CVNNs with
both asynchronous time-varying and continuously distributed
delays. Applying the idea of vector Lyapunov function, M-matrix
theory and inequality technique, we obtain several new sufficient
conditions for checking the global asymptotic and exponential
stability of CVNNs with asynchronous time-varying delays.
Notations: The notations are quite standard. Throughout this paper,
i shows the imaginary unit, i.e., i =

√
−1. For complex number

z = x+iy, the notation |z| =

x2 + y2 stands for themodule of z. E

represents the unitary matrix with appropriate dimensions. C,Cn

and Cn×m denote, respectively, the set of all complex numbers, the
set of all n-dimensional complex-valued vectors and the set of all
n × m complex-valued matrices. A and A∗ show the conjugate and
conjugate transpose of complex-valued matrix A, respectively. For
a complex-valued vector u = (u1, u2, . . . , un)

T
∈ Cn, |u| denotes

the module vector given by |u| = (|u1|, |u2|, . . . , |un|)
T , while

the notation ∥u∥ is the Euclidean norm of u. For a complex-valued
matrix A = (aij)n×n ∈ Cn×n, |A| denotes the module matrix given
by |A| = (|aij|)n×n, while ∥A∥ denotes a matrix norm defined by
∥A∥ =

√
A∗A. ρ(A) denotes the spectral radius of matrix A.

2. Model description and preliminaries

In this paper, we consider the following impulsive CVNNs with
both asynchronous time-varying and continuously distributed
delays

żi(t) = −dizi(t)+

n
j=1

aijfj(zj(t))+

n
j=1

bijfj(zj(t − τij(t)))

+

n
j=1

cij

 t

−∞

Kij(t − s)fj(zj(s))ds + Ii, t ≠ tk,

zi(t) = pik(z1(t−), . . . , zn(t−))
+ qik(z1((t − τi1(t))−), . . . , zn((t − τin(t))−))+ Jik,
t = tk

(1)

for t ≥ 0, where zi(t) ∈ C is the state of the ith neuron at time t;
fj(zj(t)) ∈ C and fj(zj(t − τij(t))) ∈ C are the activation functions
without and with time delays; τij(t) corresponds to the transmis-
sion delay along the axon of the jth unit from the ith unit and sat-
isfies 0 ≤ τij(t) ≤ τij (τij is a constant); D = diag{d1, d2, . . . , dn} ∈

Rn×n is the self-feedback connection weight matrix, where di > 0;
A = (aij)n×n ∈ Cn×n, B = (bij)n×n ∈ Cn×n and C = (cij)n×n ∈ Cn×n

are the connection weight matrices; I = (I1, I2, . . . , In)T ∈ Cn

is the input vector; Kij : [0,+∞) → [0,+∞) is the delay ker-
nel function. The second part is discrete part of model (1), which
describes that the evolution processes experience abrupt change
of state at the moments of time tk (called impulsive moments),
where zj(t−) and zj((t − τij(t))−) denote the left limit of zj(t) and
zj(t − τij(t)), respectively; pik(z1(t−), . . . , zn(t−)) represents im-
pulsive perturbations of the ith unit at time tk, and qik(z1((t −

τi1(t))−), . . . , zn((t − τin(t))−)) represents impulsive perturba-
tions of the ith unit at time tk − τij(tk); the fixed moments of time
tk satisfy 0 < t1 < t2 < · · · , limk→+∞ tk = +∞.

The initial conditions of model (1) are in the form of zi(s) =

φi(s), s ∈ (−∞, 0], where φi is bounded and continuous on
(−∞, 0].
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