
Neural Networks 81 (2016) 16–28

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Synchronization of fractional-order complex-valued neural networks
with time delay
Haibo Bao a,b, Ju H. Park b,∗, Jinde Cao c,d

a School of Mathematics and Statistics, Southwest University, Chongqing 400715, PR China
b Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, Kyongsan 38541, Republic of Korea
c Department of Mathematics, Southeast University, Nanjing 210096, PR China
d Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 25 September 2015
Received in revised form 20 March 2016
Accepted 9 May 2016
Available online 18 May 2016

Keywords:
Complex-valued neural networks
Fractional-order
Synchronization
Time delay

a b s t r a c t

This paper dealswith the problemof synchronization of fractional-order complex-valuedneural networks
with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient
conditions are obtained to guarantee the synchronization of the drive–response systems. Numerical
simulations are provided to show the effectiveness of the obtained results.
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1. Introduction

In recent years, complex-valued neural networks have gained
a lot of attention because of their wide applications in electro-
magnetic, quantum waves, optoelectronics, filtering, speech syn-
thesis, remote sensing, signal processing, and so on (Aizenberg,
2011; Aizenberg, Aizenberg, & Vandewalle, 2000; Amin & Murase,
2009; Cha&Kassam, 1995; Chen,Hanzo, & Tan, 2008;Hirose, 2012;
Jankowski, Lozowski, & Zurada, 1996;Nitta, 2004; Tanaka&Aihara,
2009; Tripathi & Kalra, 2011).

Complex-valued neural networks are not only the simple
extension of real-valued neural networks, but also are quite
different from real-valued neural networks and have more
complicated properties than real-valued neural networks. This
is mainly because the state vectors, connection weights and
activation functions in complex-valued neural networks are
all complex values. Complex-valued neural networks can solve
some problems that cannot be solved with their real-valued
counterparts. For instance, the exclusion OR (XOR) problem and
the detection of symmetry problem cannot be solved with a single
complex-valued neuron with the orthogonal decision boundaries,
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which reveals the patent computational power of complex-valued
neurons (Hirose, 1992).

Due to the finite switching speed of amplifiers, time delay
inevitably exists in neural networks. It can cause oscillation and
instability behavior of systems (Cao & Xiao, 2007; Lu, 2002; Wei
& Ruan, 1999). Therefore, the study on stability of complex-
valued neural networks with time delays is of both theoretical
and practical importance. Up until now, there are some excellent
results about the stability of complex-valued neural networks
(Chen & Song, 2013; Gong, Liang, & Cao, 2015a, 2015b; Hu &Wang,
2015; Pan, Liu, & Xie, 2015; Rakkiyappan, Velmurugan, & Cao,
2015; Song, Zhao, & Liu, 2015a, 2015b; Velmurugan, Rakkiyappan,
& Cao, 2015; Xu, Zhang, & Shi, 2014; Zhou & Song, 2013). The
µ-stability of complex-valued neural networks with unbounded
time-varying delays was investigated in Gong et al. (2015b),
Rakkiyappan, Velmurugan, and Cao (2015) and Velmurugan et al.
(2015). In Song et al. (2015b), based on Lyapunov–Krasovskii
functional and inequality technique, sufficient conditions are
derived to guarantee the stability of complex-valued neural
networks with probabilistic time-varying delays. In Zhou and Song
(2013), the problem of boundedness and complete stability of
complex-valued neural networkswith time delaywas investigated
by using local inhibition and linear matrix inequalities method.

Fractional calculus dates from the 17th century and is the
generation of integer-order calculus. Nowadays, many known
systems can be described by fractional-order systems, such
as viscoelasticity, dielectric polarization, and electromagnetic
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waves. Fractional derivatives provide an excellent instrument
for the description of memory and hereditary properties of
various materials and process (Kilbas, Srivastava, & Trujillo,
2006; Podlubny, 1999). The study of fractional-order differential
equations has attracted the interest of many researchers in the
fields of science and engineering (Raja, Khan, & Qureshi, 2010,
2011; Raja, Manzar, & Samar, 2015). So, it would be better if
neural networks are described by fractional-order systems rather
than integer-order ones. The dynamics analysis of fractional-order
neural networks has been an active area of research (Chen, Zeng, &
Jiang, 2014; Huang, Zhao,Wang, & Li, 2012; Kaslik & Sivasundaram,
2012; Tang, Wang, & Fang, 2009; Wu, Lu, & Chen, 2015; Yu, Hu,
& Jiang, 2015; Yu, Hu, Jiang, & Fan, 2014). Huang et al. (2012)
investigated chaos and hyperchaos of a fractional-order four-cell
cellular neural network by means of numerical simulations. It is
shown in Yu et al. (2015, 2014) that projective synchronization can
be achieved by combining loop-open control and fractional-order
inequality technique. In Chen et al. (2014), global Mittag-Leffler
stability and synchronization of memristor-based fractional-order
neural networks were investigated. Considering the effects of the
time delays, many researchers have focused their attention on the
stability and synchronization analysis of fractional-order neural
networks and many interesting results have appeared, see Bao,
Park, and Cao (2015), Chen, Chai, Wu, Ma, and Zhai (2013), Chen
and Chen (2015), Wang, Yang, and Hu (2015), Wang, Yu, and Wen
(2014) and Yang, Song, Liu, and Zhao (2015) and the references
therein.

Although fractional-order systems broaden conventional
integer-order systems, the stability and synchronization for
fractional-order nonlinear systems are not well developed and
still need further investigation because of higher complexity of
fractional-order systems and absence of effective analytic tools. Till
date, it is still difficult and even impossible for extending some
properties of integer-order systems to fractional-order systems.
For example, one can see how difficult it is to use quadratic Lya-
punov functions to analyze the stability in Example 14 in Li, Chen,
and Podlubny (2009), where the simple scalar fractional differen-
tial equation Dαx(t) = −x3(t) is considered. It should be pointed
out thatmost of the results about complex-valued neural networks
are integer-order ones. There are only a few results investigating
the dynamics of fractional-order complex-valued neural networks
(Rakkiyappan, Cao, & Velmurugan, 2015; Rakkiyappan, Velmuru-
gan, & Cao, 2014). It is well known that synchronization is one
of the most important and interesting phenomenon of dynamical
systems that exists in natural and man-made systems. There ex-
ist many benefits of having synchronization or chaos synchroniza-
tion in some engineering applications, such as secure communi-
cation, image processing and harmonic oscillation generation. As
far as the authors know, there are few results about the synchro-
nization of the fractional-order complex-valued neural networks,
which remains as an open challenge. So, it is necessary to investi-
gate the synchronization of fractional-order complex-valued neu-
ral networks.

Motivated by the above discussions, the objective of this paper
is to study the synchronization of fractional-order complex-valued
neural networks. The main contributions of this paper can be
summarized as follows: (1) A new delay feedback controller is
designed to achieve the synchronization between the drive system
and the response system, and this is the first time to investigate
the synchronization of fractional-order complex-valued neural
networks with time delay. (2) Compared with other results, the
results of this paper are the ones about complex values and with
time delay. Therefore, the results are less conservative and more
general. (3) Some well-studied results (Yu et al., 2014) are the
special cases of our results.

This paper is organized as follows. In Section 2, the problem
description and preliminaries are presented. In Section 3, new

criteria for synchronization between drive–response systems are
derived. A numerical example is given to prove the main results
of this paper in Section 4. Finally, the conclusions are drawn in
Section 5.
Notation: The notations are very standard. Throughout this paper,
R,Cn,Rm×n and Cm×n denote the set of real numbers, the n-
dimensional complex vector space, the set of all m × n real
and complex matrices, respectively. The subscripts ∗ and T
denote matrix complex conjugation and transposition and matrix
transposition, respectively. Let z = a + ib be a complex number,
where i =

√
−1, a, b ∈ R. |z| =

√
a2 + b2, z̄ denotes the

conjugate complex number of z, z̄ = a − ib.

2. Model description and preliminaries

In this section, we will recall some definitions and lemmas
which will be needed later. It is well known that there are several
kinds of definitions of fractional integrals and derivatives, such as
the Riemann–Liouville fractional integral and derivative and so on
(Podlubny, 1999). In this paper, we will adopt Caputo fractional
derivative.

Definition 1 (Kilbas et al., 2006; Podlubny, 1999). The fractional
integral of order α for a function f is defined as

Iα f (t) =
1

Γ (α)

 t

t0
(t − s)α−1f (s)ds,

where t ≥ t0 and α > 0.

Definition 2 (Kilbas et al., 2006; Podlubny, 1999). Caputo’s deriva-
tive of order α for a function f ∈ Cn([t0,+∞),R) is defined by

Dα f (t) =
1

Γ (n − α)

 t

t0
(t − s)n−α−1f (n)(s)ds,

where t ≥ t0 and n is a positive integer such that n − 1 < α < n.
Particularly, when 0 < α < 1, Dα f (t) =

1
Γ (1−α)

 t
t0
(t −

s)−α f ′(s)ds.

Consider a continuous fractional-order complex-valued neural
network with time delay as the drive system described by

Dαz(t) = −Cz(t)+ Af (z(t))+ Bg(z(t − τ))+ J(t), (1)

where 0 < α < 1 denotes the order of fractional-order derivative,
z = (z1, z2, . . . , zn)T ∈ Cn is the state vector, C = diag{c1, c2,
. . . , cn} ∈ Rn×n is the self-feedback connection weight matrix
with cj > 0 (j = 1, 2, . . . , n), τ is the time delay, A = (ajk)n×n
∈ Cn×n and B = (bjk)n×n ∈ Cn×n are the connection weight
matrix at time t and time t −τ . f (z(t)) = (f1(z1(t)), f2(z2(t)), . . . ,
fn(zn(t)))T : Cn

→ Cn and g(z(t − τ)) = (g1(z1(t − τ)), g2(z2(t −

τ)), . . . , gn(zn(t − τ)))T : Cn
→ Cn are the complex-valued

vector-valued activation functions at time t and time t − τ , and
J(t) = (J1(t), J2(t), . . . , Jn(t))T ∈ Cn is the external input vector.

The response system is as follows

Dα z̃(t) = −Cz̃(t)+ Af (z̃(t))+ Bg(z̃(t − τ))+ J(t)+ U(t). (2)

The initial conditions associated with (1) and (2) are given by the
following form:

zj(s) = φj(s)+ iψj(s), z̃j(s) = φ̃j(s)+ iψ̃j(s), s ∈ [−τ , 0],

where φj(s), ψj(s), φ̃j(s), and ψ̃j(s) ∈ C([−τ , 0],Rn), j = 1,
2, . . . , n.

It is known that the activation functions in real-valued neural
networks are usually chosen to be smooth and bounded. But
according to Liouville’s Theorem (Mathews & Howell, 2012), every
bounded entire function in complex domain must be constant.
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