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a b s t r a c t

Decision-making is a flexible process dependent on the accumulation of various kinds of information;
however, the corresponding neural mechanisms are far from clear. We extended a layered model of the
frontal eye field to a learning-based model, using computational simulations to explain the cognitive
process of choice tasks. The core of this extendedmodel has three aspects: direction-preferredpopulations
that cluster together the neurons with the same orientation preference, rule modules that control
different rule-dependent activities, and reward-based synaptic plasticity that modulates connections
to flexibly change the decision according to task demands. After repeated attempts in a number of
trials, the network successfully simulated three decision choice tasks: an anti-saccade task, a no-go
task, and an associative task. We found that synaptic plasticity could modulate the competition of
choices by suppressing erroneous choices while enhancing the correct (rewarding) choice. In addition,
the trained model captured some properties exhibited in animal and human experiments, such as the
latency of the reaction time distribution of anti-saccades, the stop signal mechanism for canceling a
reflexive saccade, and the variation of latency to half-max selectivity. Furthermore, the trainedmodel was
capable of reproducing the re-learning procedures when switching tasks and reversing the cue-saccade
association.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Decision-making in the presence of multiple choices requires
more than sensory signaling and motor response. Information ac-
cumulation and processing are also necessary for decision-making
(Noorani, 2014; Salinas, 2004; Savine & Braver, 2010). Decision-
making is a flexible process of integrating various forms of in-
formation, such as past experience and learning rules (Chaumon,
Kveraga, Barrett, & Bar, 2014; Cutsuridis, Kumari, & Ettinger, 2014;
Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012;
Kan, Niel, & Dorris, 2012; Pleger et al., 2006). In an anti-saccade
testing paradigm, which is an important tool for estimating frontal
lobe dysfunction, trial-by-trial training can alter the visuomotor
mapping of macaques andmake them saccade to the opposite side
against the reflexive response (Munoz & Everling, 2004). Based on
this kind of flexibility, humans and other animals are capable of re-
sponding to a specific stimulus in different ways (Drea & Wallen,
1999; Platt & Glimcher, 1999).
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The visuomotor choice tasks, such as the anti-saccade task and
no-go task, have beenwidely used to investigate the cognitive pro-
cess of decision-making, because a saccadic eye movement can
readily represent the behavioral outcome (Hutton, 2008; Leathers
& Olson, 2012; SchlagRey, Amador, Sanchez, & Schlag, 1997). These
experiments study the process of accumulating experience and in-
tegrating information. The goal of these tasks is to performplanned
eye movements in response to learned stimuli, and the decision is
signaled to be correct by reward. At the end of a trial, rewards can
be given based on the performance of this sensory-triggered ac-
tivity, instructing animals to learn the ‘‘correct’’ visuomotor map-
pings and suppress the ‘‘erroneous’’ choices (Baldassarre et al.,
2013; Blank, Biele, Heekeren, & Philiastides, 2013; Munoz & Ev-
erling, 2004). In other words, the brain will re-establish the link
between the ongoing sensory signals and behavioral results, under
the guidance of rewards (Brown, Bullock, & Grossberg, 2004; Luh-
mann, Chun, Yi, Lee, & Wang, 2008). Some experimental findings
have emphasized the role of synaptic plasticity in the functional
neural circuits in the frontal eye fields (FEF), which play a key role
in oculomotor control of saccadic eye movements and visual at-
tention. For example, Chen and Wise (1995b) observed learning-
dependent and learning-selective activities in FEF. Bichot, Schall,
and Thompson (1996) discovered a type of experience-dependent
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plasticity that mediated the learning of arbitrary stimulus-action
associations. Recent results presentmore evidence that learning in
oculomotor behaviors involves FEF (Lee & Keller, 2008; Lewis, Bal-
dassarre, Committeri, Romani, & Corbetta, 2009; Tseng et al., 2013).
All these findings provide support for synaptic plasticity in FEF.

In this study, we extended the layered FEF model introduced
by Heinzle, Hepp, and Martin (2007) into a learning-based model,
shedding more light on the cognitive process of choice tasks.
The modification of the model includes four aspects: (1) The
recognition module and layer 6 were removed and the model
could initially only cause a reflexive saccade (pro-saccade). (2)
Two rule modules were added to the fixation input layer. These
modules not only reserved the function of fixation neurons, but
could also transform the color signal from V4 into rule-based
control. Meanwhile, two functional units were divided out of layer
2/3 to represent the rule-dependent neurons that are controlled
by the rule modules. Interestingly, the rule-preferred activity has
been observed in FEF and other parts of the frontal cortex (Asaad,
Rainer, & Miller, 2000; Everling & DeSouza, 2005; Everling &
Munoz, 2000; Ferrera, Cohen, & Lee, 1999; Hasegawa, Peterson, &
Goldberg, 2004; Hoshi, Shima, & Tanji, 1998; Johnston & Everling,
2006; Johnston, Levin, Koval, & Everling, 2007; White & Wise,
1999). In the work of Johnston, DeSouza, and Everling (2009),
a mechanism based on two functional populations has been
proposed to account for task selectivity in the prefrontal cortex.
All these evidence support the rule module in our model. (3) The
populations had direction preference, i.e. different populations in
a layer preferred specific directions. Orientation selectivity in FEF
has been extensively researched (Douglas, Martin, & Whitteridge,
1991; Hansel & van Vreeswijk, 2012; Hubel & Wiesel, 1959;
Li & Creutzfeldt, 1984; Nowak, Sanchez-Vives, & McCormick,
2008; Ringach, Shapley, & Hawken, 2002; Schiller, Finlay, &
Volman, 1976). Additionally, an increasing number of models have
applied this property to distinct functional modules to simulate
various physiological experiments (Ardid & Wang, 2013; Engel &
Wang, 2011; Shushruth et al., 2012; Wu & Guo, 2011; Zirnsak,
Beuth, & Hamker, 2011). (4) We assumed that the connections
from layer 4 to layer 2/3 were plastic, employing reward-based
Hebbian learning (Ardid & Wang, 2013; Engel & Wang, 2011;
Pfeiffer, Nessler, Douglas, & Maass, 2010). In the present model,
the connection between E4 and I23 which did not exist in
the original model was considered to be weakly linked and
plastic. These plastic synapses simulated the varying inputs to
the neuronal population that was involved in the accumulation of
sensory information, allowing decision-making to be guided by the
associated values of the choices (Connolly, Bennur, & Gold, 2009;
Gold & Shadlen, 2002, 2003; Gottlieb, Hayhoe, Hikosaka, & Rangel,
2014; Law & Gold, 2009).

In order to gain insight into the effect of the plasticity on
controlling the oculomotor behaviors in FEF, we trained the
extended model to simulate three different choice tasks: an anti-
saccade task, a no-go task, and an associative task. The simulation
results successfully accounted for the learning processes, and
quantitatively exhibited the cognitive procedure of decision-
making. They also could explain the relearning processes when
tasks switched without an explicit cue. The extended model
generalizes the learning mechanism to the saccade control in FEF
so that it can choose or switch between multiple sensory-motor
maps, suggesting that the plasticity plays an important role in
flexibly controlling the saccade movements.

2. Method

2.1. Network architecture

The architecture of the learning-based FEF model is illustrated
in Fig. 1(A). This extended model consists of interacting layers

contributing to different functions: sensory processing in layer
4 (L4), attention allocating in layer 2/3 (L23), fixation input
layer (FIX) and motor output in layer 5 (L5). L4 neurons pro-
cess orientation-preferred visual input from early visual areas.
L23 serves as an attention allocator as it transforms the sensory
signal from L4 into the attention signal at a direction-preferred
position. The activities of L23 neurons are similar to those of vi-
suomotor neurons in FEF classified by Bruce and Goldberg (1985).
Visuomotor neurons discharge both in response to visual signals
and after the visual targets disappear. The response of visuomo-
tor neurons can persist until the monkey makes a saccadic eye
movement. Based on the winner-take-all competition and strong
recurrent excitation, L23 neurons are able to reproduce these ac-
tivities of visuomotor neurons. Strong synaptic weights from the
excitatory pool in L5B to the inhibitory pool in L23 are required to
suppress the L23 neurons when a saccade is made in the present
model. L23 is divided into two task-relevant units L23L and L23R
which are controlled by the rule neurons in FIX. In addition, we use
two populations to simulate the rule neurons which transform the
green and red color information from V4 into a rule signal in FIX
(Fig. 1(C)). The third population in FIX only processes fixation input
without color information. For the sake of simplicity, we have de-
signed the network so that E23L and E23R are inhibited by the red
and green rule neurons through connecting FIX to I23L and I23R,
respectively. L5 is comprised of two types of neurons: rampingmo-
tor neurons (L5R) and burst motor neurons (L5B), which integrate
attention signals and signal the motor output, respectively. The
ramping activities of L5R are inhibited by FIX. Except FIX, each layer
has 13 retinotopic positions which have their own preferred direc-
tion (Fig. 1(B)). It is noteworthy that a retinotopic position consists
of a different number of neurons in different layers. In L4 and L23,
each position contains 100 excitatory neurons and 25 inhibitory
neurons, while L5 is composed of 40 excitatory and 25 inhibitory
neurons. FIX has 100 neurons in each of the three excitatory pop-
ulations, and 75 inhibitory neurons.

2.2. Neuronal dynamics

Each neuron is modeled as an integrate-and-fire model which
is described by

τm
dV
dt

= −V − gexc(V − Ve) − ginh(V − Vi) + Iext (1)

where V represents the membrane potential, τm is the membrane
time constant, τm = 20 ms in excitatory neurons and τm = 12
ms in inhibitory neurons, and Ve = 74 mV, Vi = −10 mV denote
the excitatory and inhibitory reversal potentials. The conductance
gexc and ginh consist of three distinct parts ge,i, gnoise and gplastic
which represent synaptic conductance, noise input and the plastic
synapse. The spiking threshold is 20 mV, and reset value is 10 mV.
The absolute refractory period of excitatory and inhibitory neurons
are 1.8ms and 1.2ms, respectively. First, the synaptic conductance
is given by

gk→j
e,i =


l

gkjs
k→j
e,i

τe,i
dse,i
dt

= −se,i

(2)

where se,i is the activation variable and τe,i is the time constant of
excitatory and inhibitory synapses. Different connections are given
different time constants: τe,i = 50 ms in the connection E5R →

E5R, τe,i = 10ms in the connections E23L → E23L, E23R → E23R,
I5B → E5R, and τe,i = 5 ms in the other connections. gkj denotes
the direction preference factor between neurons with preferred
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