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h i g h l i g h t s

• Relationship between a PILD and an FLD is clarified based on overall accuracy.
• A PILD is not certainly equivalent to an FLD if the desired outputs are fixed.
• A PILD has nothing in common with an FLD when the desired outputs are changeable.
• Accuracies of PILDs are improved by optimal thresholds related to sizes and regions.
• The iterative learning strategy of PILDs is proposed, realized and verified.
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a b s t r a c t

This paper studies the learning and generalization performances of pseudo-inverse linear discriminant
(PILDs) based on the processing minimum sum-of-squared error (MS2E) and the targeting overall
classification accuracy (OCA) criterion functions. There is little practicable significance to prove the
equivalency between a PILDwith the desired outputs in reverse proportion to the number of class samples
and an FLD with the totally projected mean thresholds. When the desired outputs of each class are
assigned a fixed value, a PILD is partly equal to an FLD. With the customarily desired outputs {1, -1}, a
practicable threshold is acquired, which is only related to sample sizes. If the desired outputs of each
sample are changeable, a PILD has nothing in common with an FLD. The optimal threshold may thus
be singled out from multiple empirical ones related to sizes and distributed regions. Depending upon
the processing MS2E criteria and the actually algebraic distances, an iterative learning strategy of PILD
is proposed, the outstanding advantages of which are with limited epoch, without learning rate and
divergent risk. Enormous experimental results for the benchmark datasets have verified that the iterative
PILDs with optimal thresholds have good learning and generalization performances, and even reach the
top OCAs for some datasets among the existing classifiers.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Performances of classifiers can be evaluated from two aspects:
processing and targeting criteria. The most often-used processing
evaluation criterion functions are the minimum sum-of-squared
errors (MS2Es) and the least-mean-squared (LMS) errors (Duda,
Hart, & Stork, 2000). And the most conventional targeting eval-
uation criterion functions are the overall classification accura-
cies (OCAs), or called the overall recognition rates (ORRs) or the
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overall error rates (OERs) (Huang & Ling, 2005). There are two
main learning procedures: analytical and iterative, to determine
the parameters of classifiers (Duda et al., 2000; Suykens, Ges-
tel, Brabanter, Moor, & Vandewalle, 2002). Specified to a linear
classifier πl : θ + wTx = 0, two main types of algorithms
to determine the thresholds θ and the weight vectors w are as
follows: (A) analytical procedures, e.g., the MS2E solutions, de-
pending upon the processing MS2E criterion functions J(θ,w) =
∥θ1+ Xw − d∥2 by one-time calculation of explicit equations in a
lump, and (B) iterative procedures, e.g., the gradient descent solu-
tions, mainly depending upon the processing LMS error functions
J(θ(τ ),w(τ )) =


p


θ (τ )+wT (τ ) xp − dp

2 by numerous re-
peated iterations (Duda et al., 2000; Koford & Groner, 1966). The
analytical procedures have two advantages over the iterative ones:
(i) fast computational speeds and (ii) without local minimums.
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Fisher linear discriminants (FLDs), also called linear discrimi-
nant analyses (LDAs), are very popular (Billings & Lee, 2002; Caw-
ley & Talbot, 2003; Koford & Groner, 1966). Following the force of
habit, FLDs are often taken for and in particular equated with lin-
ear classifiers (Cooke, 2002; Raudys&Duin, 1998; Rozza, Lombardi,
Casiraghi, & Campadelli, 2012). However, it must be clarified that
FLDs are only a type of analytical learning algorithms based on the
Rayleigh quotients J(w) =

wT SBw
wT SWw in the Bayesian decision theory

(Duda et al., 2000). Here, SB and SW are the between- and within-
class scatter matrices, respectively. Of course, FLDs are more used
as a kind of feature extraction tools than a type of classifiers,
especially in the image processing fields, e.g., the classical Fisher-
faces (Belhumeur, Hespanha, & Kriegman, 2007). Single-layer per-
ceptrons are another type of linear classifiers (Elozondo, 2006;
Escalera, Tax, Pujol, Radeva, & Duin, 2008; Suykens et al., 2002).
They mainly employ the iterative learning procedures, e.g., back-
propagation, to determine the thresholds θ and the weightsw.

Pseudo-inverse linear discriminants (PILDs), another kind of
analytical learning algorithm for linear classifiers, obtain the θ
andw according to the processing MS2E criterion functions (Duda
et al., 2000). Note that theword ‘‘pseudo-inverse’’ here is borrowed
to show that the equation for calculating the θ and w formally
contains the Moore–Penrose inverse item (Hoyle, 2011; Raudys
& Duin, 1998; Tapson & van Schaik, 2013), but not to imply
the non-invertibility of a rectangular matrix. For the purpose of
simplicity, sometimes the abbreviated terms ‘‘PILDs’’ are inexactly
used to imply ‘‘linear classifiers with pseudo-inverse discriminant
algorithm’’, and so are ‘‘FLDs’’ to ‘‘linear classifiers with Fisher
discriminant algorithm’’, henceforth.

A PILD has a bit higher computational complexity than an FLD,
because the former processes an (m+ 1)× (m+ 1) square matrix
while the latter does anm×m one. However, a PILD has twomain
advantages over an FLD: (A) the θ and the w are simultaneously
obtained by solving a single analytical equation, and (B) the MS2E
criterion function could be further developed to optimize the θ and
w. It has been proved that a PILDwith the specially desired outputs
in reverse proportion to the number of samples is equivalent to
an FLD with the totally projected mean (TPM) threshold (Duda
et al., 2000). FLDs are quite popular (Billings & Lee, 2002; Cooke,
2002; Raudys & Duin, 1998); however, PILDs are rarely applied to
practice. The true reason lies in the fact that PILDs are not ideal in
OCAs.

Real-world datasets are of diverse sizes and distributed regions
(Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012; Nicolas,
Javier, & Aida de, 2012). Class imbalance is an objective being
(Cano, Zafra, & Ventura, 2013; Fernandez, Garcia, Jesus, & Herrera,
2008; Huang & Ling, 2005). Taking a binary-class problem {ω1, ω2}

for example, there are the following four possible cases: (A) ω1 is
equal to ω2 both in size and in region; (B) ω1 is larger in size but
smaller than or equal to ω2 in region; (C) ω1 is larger in region but
smaller than or equal to ω2 in size; (D) ω1 is larger both in size and
in region than ω2. It is difficult for a single θ and even a single w
obtained by using an analytical equation in one-lump computation
to suit all cases.

In order to solve the classification problems of imbalanced
datasets, we can proceed from the following approaches: (i) data
and (ii) classifiers as well as algorithms. In the data levels are
diversely over-, under-, and synthetic-sampling techniques (Barua,
Islam, Yao, & Murase, 2014; Galar, Fernández, Barrenechea, &
Herrera, 2013; Nicolas et al., 2012). Decision trees (Wang & Yao,
2013), support vector machines (SVMs) (Maldonado & Lopez,
2014; Tang, Zhang, Chawla, & Krasser, 2009), neural networks
(Castro & Braga, 2013), FLDs (Gao, Ding, & Zhu, 2014; Rozza et al.,
2012) and even k-nearest- neighbor rules (Barua et al., 2014)
are the main classification models. And different cost-sensitive
learning algorithms, e.g., bagging and boosting (Hand & Till, 2001;

Nicolas et al., 2012; Shen & Li, 2010) as well as some criterion
functions, especially, the areas under the ROC curves (AUCs)
(Adams & Hand, 1999; Bradley, 1997; Huang & Ling, 2005), are
paid much attention. Comparatively speaking, PILDs do not attract
enough concern.

This paper aims at improving the learning and generalization
performances of PILDs based on the processing MS2E and the
targeting OCA criterion functions (Adams & Hand, 1999; Bradley,
1997), and will devote to addressing the following problems:

(a) Is a PILD with the designated outputs in reverse proportion
to the number of samples indeed equal to an FLD with the
TPM threshold? What if the desired outputs are taken the
conventional values dp ∈ {1,−1} (Duda et al., 2000; Koford
& Groner, 1966; Rozza et al., 2012)?

(b) Are the weight vectors and the thresholds calculated by the
pseudo-inverse solution optimal? If not, how to optimize
them in a comprehensive consideration of sample sizes and
distributed regions (Gao et al., 2014)?

(c) Is it reasonable to allocate the desired outputs of each class
a fixed value? If not, how to re-allocate the rational ones
for all training samples, including both the correct and the
misclassified ones (Adams & Hand, 1999; Duda et al., 2000)?

(d) How to introduce an iterative learning strategy to the analytical
PILDs in order to further optimize the thresholds and weights
(Duda et al., 2000; Gao et al., 2014)?

Motivated by the troublesome issues above, this paper concen-
trates attention on improving the learning and generalization of
PILDs from the aspects of thresholds, weight vectors and data in
the algorithm level. The contributions of thiswork are summarized
in the following:

(A) A PILD is not exactly equivalent to an FLD even if the desired
outputs in the PILD are in reverse proportion to the number of
samples. Several examples are given to support the argument.

(B) A PILD is partly equivalent to an FLDwhen all training samples
of each class are allocated a fixedly desired output. And they
two have nothing in common when all the training samples
are assigned with changeably desired outputs.

(C) The most often-used TPM thresholds usually behave poor in
OCAs because of the unsuitable truncation (Gao et al., 2014). A
simple practicable MS2E threshold comes into being by using
the customarily desired outputs dp ∈ {1,−1}. Furthermore,
a rational threshold may be obtained by using the actually
algebraic distances as the desired outputs.

(D) Multiple empirical thresholds are developed in a comprehen-
sive consideration of sizes and regions. The optimal thresholds
are singled out from among them aiming at the best OCAs.

(E) The iterative learning strategy of PILDs is proposed by means
of the processing MS2E criterion and the actually algebraic
distances, which is with limited epochs, without learning rate
and divergent risk.

We stress that this work is the development of our earlier work
(Gao et al., 2014); therefore we will always pay much attention
on the difference between PILDs and FLDs. The rest of this paper
is organized as follows: Section 2 introduces the related work
of PILDs. In Section 3, the relationship between PILDs and FLDs
is clarified, and three examples are given to verify their similar
and different places. Section 4 develops a series of empirical
thresholds related to sizes and regions. Section 5 goes into details
on the iterative learning strategy of PILDs based on the processing
MS2E criterion functions and the changeably desired outputs.
Section 6 presents numerous experimental results for the real-
world benchmark datasets to demonstrate the superior learning
and generalization performances of PILDs. Finally,wewill conclude
this work in Section 7.
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