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h i g h l i g h t s

• We developed a real-time vision system with analog/digital mixed architecture.
• The system consists of an analog MOS transistor resistive network (RN) and an FPGA.
• The RN conducts multi-scale filtering in real time with a low power consumption.
• The FPGA finds scale-invariant key points by frequency-band parallel processing.
• The system was combined with a PC to track a moving target of a varying scale.
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a b s t r a c t

We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real
time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual
system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system
comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-
programmable gate array (FPGA), and a digital computer. We employed theMOS-based resistive network
for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the
frequency-band signals. The proposed system was evaluated by tracking the feature points detected on
an object in a video.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Real-time object tracking is one of the most important
requirements for autonomous mobile robots. Vision-based object
tracking requires selected points to be tracked and corresponding
points to be searched in each frame. These tasks can be achieved
effectively by using a local feature-point detector and descriptor.
Methods that use such a detector and descriptor have been
employed in awide range of applications, and they are known to be
effective (Schmid &Mohr, 1997; Su et al., 2012; see also Tuytelaars
& Mikolajczyk, 2007 for an overview).

These methods extract feature points from an image according
to particular criteria, and they describe a feature vector at each
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feature point. To apply feature points for object tracking in an
algorithm implemented in a robot, the feature points need to be
invariant to scale. This is because, in an image obtained by the
mobile robot’s vision sensor system, the apparent size of objects
changes over time depending on the distance between the object
and the vision sensor system. In addition, the vision sensor system
used by a mobile robot must ensure low power dissipation with
compact hardware.

One feasible algorithm for extracting and describing scale-
invariant features is the scale-invariant feature transform (SIFT)
(Lowe, 2004). The SIFT algorithm extracts and describes the scale-
invariant local features of an object using multiple band-pass-
filtered images. A couple of previous studies have demonstrated
the effectiveness of the SIFT algorithm for object recognition
(Ihara, Fujiyoshi, Takagi, Kumon, & Tamatsu, 2009; Lowe, 2004,
for example). However, it is difficult for conventional digital image
processing systems to extract SIFT features from an image in real
time with low power consumption and compact hardware. There
are two reasons for this. First, the SIFT algorithm uses multiple
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Fig. 1. Processing flow diagram for the SIFT algorithm. The SIFT algorithm consists of (a) multi-scale spatial filtering, (b) SIFT keypoint detection, and (c) feature description.
In this image, IGF(σk) represents a Gaussian-filtered image, which is obtained by applying the Gaussian filter fGF(σk) to the input image. Further, IDoG(σk) represents a
DoG-filtered image, and σk represents the scale parameter.

spatial low-pass-filtered images, and their sequential generation
incurs high computational costs. Second, feature detection and
description are executed repeatedly for multiple filtered images,
which have high computational time requirements.

Much efforts have been devoted to improving the efficiency of
the SIFT algorithm, that are focusing on improving the software
algorithm and developing hardware accelerators. Software-based
approaches include Fast approximated SIFT (Grabner, Grabner,
& Bischof, 2006), SURF (Bay, Ess, Tuytelaars, & Van Gool, 2008),
BRISK (Leutenegger, Chli, & Siegwart, 2011) and ORB (Rublee,
Rabaud, Konolige, & Bradski, 2011). These methods aim to reduce
the computational time by sacrificing the quality of the extracted
features. Previous studies have also developed fast Gaussian
filtering techniques, performing largeGaussian filteringwithmuch
less computation (Deriche, 1990; Farneback & Westin, 2006;
Robinson, 2012; Sugimoto & Kamata, 2015; Unser, Aldroubi, &
Eden, 1993; Wells, 1986). Although these efforts are successful at
reducing the computational cost of the SIFT algorithm, these costs
remain high for high-resolution inputs in particular.

Hardware accelerators dedicated to the SIFT algorithm have
been also designed. These systems exploit the fast processing
time of graphics processing units (GPUs), field-programmable gate
arrays (FPGAs), or application-specific integrated circuits (ASICs).
A GPU system has been applied to three-dimensional object
recognition using the SIFT algorithm (Sinha, Frahm, Pollefeys, &
Genc, 2006). Although GPUs offer high-speed parallel processing,
GPU-based systems are unsuitable for portable applications, owing
to their excessive power dissipation. An ASIC with multiple
processing elements, each of which executes the SIFT algorithm
selectively to predetermined regions of interest, has also been
fabricated and applied to object recognition. In other previous
studies, hardware accelerators that execute fast spatial filtering
have been implemented on an FPGA (e.g., Bonato, Marques, &
Constantinides, 2008; Huang, Huang, Ker, & Chen, 2012) or an ASIC
(Lee et al., 2011; Su et al., 2012). Although application-specific
hardware components improve the computational speed, they still
suffer from high computational costs intrinsic to spatial filtering
with full digital image processing.

Biological visual systems can be a good model for designing
architectures to compute the SIFT algorithm efficiently. Spatial
band-pass filtering is known to be a process executed at the early
stages of the retinal neuronal circuit revealed in the response of
bipolar cells (Kaneko, 1973). A neuronal architecture that applies
such band-pass filtering was modeled as the difference between
the outputs of two resistive networks (RNs) with a different

spatial extent (Yagi, Ariki, & Funahashi, 1989; Yagi, Ohshima, &
Funahashi, 1997). The difference between the two layers yields
a spatial-band-passed image whose pass band is determined
by the spatial-frequency characteristics of the two layers. Such
band-pass architecture with two layers of RNs was implemented
in a complementary metal-oxide semiconductor (CMOS) circuit
(Boahen & Andreou, 1992; Kameda & Yagi, 2003; Matsumoto
et al., 1992), inspired by analog very-large-scale integrated (aVLSI)
image sensors known as silicon retinas (Mead &Mahowald, 1988).
The RN is considered to be themost suitable solution tominimizing
power consumption during spatial filtering (Mead, 1990; Poggio &
Koch, 1985).

In a previous study, we proposed a SIFT computation algorithm
that employs RN filters rather than Gaussian filters to extract
keypoints. These filters play a key role in finding the corresponding
points in images of different scales and rotation, based on
computer simulations (Yasukawa, Okuno, & Yagi, 2012). However,
it is unfeasible to implement multiple RNs with analog integrated
circuit technology to realize scalable multi-band pass filters.
Moreover, it is simply unrealistic to implement a SIFT algorithm
with analog hardware. A novel system combining the advantages
of analog metal-oxide semiconductor (MOS)-based RNs and
compact digital hardware is needed for applying the SIFT algorithm
to real-time image processing.

In this paper, we propose a novel architecture of a vision
sensor system consisting of an analog MOS-based RN and an
FPGA to execute SIFT computations in real time and constructed
a prototype system based on the architecture. We demonstrate
the efficiency of the prototype system by applying it to real-
time object tracking based on scale-invariant features. The key
factors of the efficiency are pixel-parallel filtering performedby the
analog MOS-based RNs, and frequency-band parallel processing
performed by the FPGA. Experiment results show that the scale-
invariant features extracted by the proposed system are applicable
to object tracking in which the apparent size of the target varies.

2. SIFT algorithm

We used the SIFT algorithm to extract local feature points from
an input image. In this section, we only briefly review the SIFT
algorithm, because its details are described in Lowe (1999, 2004).

Fig. 1 shows a flow diagram for the SIFT algorithm. The
SIFT algorithm consists principally of multi-scale spatial filtering
(Fig. 1(a)), SIFT keypoint detection (Fig. 1(b)), and a description of
the feature vector around SIFT keypoints (Fig. 1(c)).
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