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a b s t r a c t

Sparse representation has beenwidely studied as a part-based data representationmethod and applied in
many scientific and engineering fields, such as bioinformatics and medical imaging. It seeks to represent
a data sample as a sparse linear combination of some basic items in a dictionary. Gao et al. (2013) recently
proposed Laplacian sparse coding by regularizing the sparse codeswith an affinity graph. However, due to
the noisy features and nonlinear distribution of the data samples, the affinity graph constructed directly
from the original feature space is not necessarily a reliable reflection of the intrinsic manifold of the
data samples. To overcome this problem, we integrate feature selection and multiple kernel learning
into the sparse coding on the manifold. To this end, unified objectives are defined for feature selection,
multiple kernel learning, sparse coding, and graph regularization. By optimizing the objective functions
iteratively, we develop novel data representation algorithms with feature selection and multiple kernel
learning respectively. Experimental results on two challenging tasks, N-linked glycosylation prediction
and mammogram retrieval, demonstrate that the proposed algorithms outperform the traditional sparse
coding methods.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, sparse representation as a part-based represen-
tation method has attracted much attention from both the aca-
demic and industrial communities (Wang, Bensmail, Yao, & Gao,
2013). Sparse representation methods assume that a data sample
can be represented as a sparse linear combination of some basic
elements in a dictionary. The resulting optimization problem pe-
nalizes the l1-norm of the linear combination coefficients (Wright,
Yang, Ganesh, Sastry, & Ma, 2009). In Wright et al. (2009), Wright
et al. proposed the use of sparse representation for the robust face
recognition problem by representing a face image as the sparse re-
construction of the training face images in the database. Sparse
coding (Sc) was further proposed by Lee, Battle, Raina, and Ng
(2007), in which they not only learned the sparse reconstruction
coefficients but also the dictionary containing the basic elements.
Moreover, non-negative matrix factorization (NMF) (Wang, Al-
masri, & Gao, 2012) was improved to sparse NMF via alternating
non-negativity-constrained least squares by Kim and Park (2007).
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By using the sparse constraints, both sparse coding and sparse
NMF can learn a good part-based representation. However, they
perform the learning in the Euclidean space and fail to discover the
intrinsic manifold structure of the data space, which is essential
to real-world applications (Cai, He, Han, & Huang, 2011). Because
of the sparsity of the combination coefficients and the overcom-
pleteness of the dictionary, the similar data samples may be en-
coded as totally different sparse codes by sparse coding or sparse
NMF. To address this problem, manifold constraints were imposed
on the sparse representation method, by explicitly taking into ac-
count the local manifold structure of the data. For example, Cai
et al. (2011) proposed the graph-regularized non-negative matrix
factorization (GNMF) for data representation by constructing an
affinity graph to encode the geometrical information and by seek-
ing a matrix factorization, that respected the graph structure. Sim-
ilarly, Gao, Tsang, and Chia (2013) proposed the Laplacian sparse
coding (LapSc) by incorporating a graph-based local similarity pre-
serving term into the objective function of sparse coding, thus re-
leasing the instability of the sparse codes.

Most manifold regularized representation methods employ the
nearest neighbor graph structure to encode the manifold informa-
tion (Cai et al., 2011; Gao et al., 2013). The graph is constructed
from the original feature space of samples and then used to regu-
larize the sparse representations, assuming that if two data sam-
ples are close in the original feature space, the representations of
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these two samples are also close to each other. Despite the success
of such a common graph strategy for manifold regularization, two
major problems have not yet been properly addressed:

1. Some features from the original feature space are noisy features,
which are irrelevant to the tasks at hand. Graphs constructed
using these features cannot reflect the intrinsic manifold struc-
ture of the data samples. One may first perform the feature se-
lection and then use the selected features to construct the graph
for sparse representation regularization. However, the sparse
representation on themanifold cannot adjust itself according to
the feature selection results. It also cannot capture the intrinsic
relations among the features, the sparse representation and the
manifold.

2. The original data may lie on a nonlinear distribution, although
the neighbors are found from the linear distance between the
data samples, like the Euclidean distance (Courrieu, 2005), thus
making the nearest neighbor graph not necessarily an accurate
representation of the intrinsicmanifold structure. A kernel trick
was recently proposed to handle this problem by mapping the
data to a high-dimensional, nonlinear Hilbert space (Alzate &
Suykens, 2012). However, the selection of kernels and parame-
ters remains a difficult problem. One possible way to solve this
problem is to use cross-validation to select the optimal kernel,
but it suffers from being time consuming and are easily over-
fitted.

To overcome the disadvantages mentioned above and inspired
by Zeng and Cheung (2011), we investigate the intrinsic relation
between the feature selection/multiple kernel learning and the
sparse representation on amanifold. The contribution of this paper
consists of two novel manifold-regularized sparse representation
algorithms dealing with noisy features and nonlinearly distributed
data respectively:

• To handle the noisy features, we propose a novel method
that performs feature selection within the framework of the
manifold-regularized sparse representation. We propose a
novel unified objective function that takes into account the fea-
ture selection, sparse representation and manifold regulariza-
tion simultaneously. In the sparse representation, the feature
weights and the graph are updated alternately by optimizing
the objective function, resulting in a novel Sparse Representa-
tion on a Manifold with Feature Selection algorithm—SRM-FS.

• To handle the nonlinear distribution data and the kernel and pa-
rameter selection, we propose a novel method that integrates
the multiple kernel learning and the sparse representation reg-
ularized by the manifold. Given a pool of kernels with different
model definitions and parameters, the final kernel is learned by
the weighted linear combination of the kernels from this pool.
The multiple kernel weights, the sparse representations and
the affinity graph are learned by optimizing a unified objective
function alternately, resulting in a novel Sparse Representation
on a Manifold with Multiple Kernel Learning algorithm—SRM-
MKL.
The remainder of this paper is organized as follows:We present

the proposed sparse representation algorithm on a manifold with
feature selection in Section 2, and then extend it to the sparse
representation algorithm on a manifold with multiple kernel
learning in Section 3. In Section 4, comparative experiments on
two challenging tasks are conducted to show the performance of
the proposedmethods. Finally, conclusions are drawn in Section 5.

2. Feature selection for sparse representation on a manifold

Suppose we have n samples in the training dataset denoted
as X = {x1, . . . , xn}, where xi = [xi1, . . . , xid]⊤ ∈ Rd is the d-
dimensional feature vector of the i-th sample. The task of feature

selection is to scale the features with different weights and thus
obtain a weighted feature space, parameterized by a nonnegative
vector, λ = [λ1, . . . , λd]

⊤
∈ Rd

+
, where λl is the scaling weight of

the l-th feature, restricted by
d

l=1 λl = 1 (Gold, Holub, & Sollich,
2005). The feature vector of the i-th sample weighted by λ can be
denoted as xλ

i = [λ1xi1, . . . , λdxid]⊤ = diag(λ)xi, where diag(λ) ∈

Rd×d
+ is a diagonal matrix with λ on the diagonal.
Given the training set,X, the sparse representation aims to find

a set of basic vectors,U = {u1, . . . , um} ∈ Rd, such that each train-
ing sample, xi, can be represented as a sparse linear combination of
those basic vectors in the dictionary, U, as

xi ≈

m
k=1

ukvik, (1)

where vik, k = 1, . . . ,m are the linear combination coeffi-
cients (Wright et al., 2009), which are supposed to be as sparse as
possible. By denoting U = [u1, . . . , um] ∈ Rd×m as the basic ma-
trix and vi = [v1i, . . . , vmi] ∈ Rm as the coefficient vector for the
i-th sample, and also integrating the feature scaling weights in λ
to both the sample vectors and basic vectors, (1) can be turned to
diag(λ)xi ≈ diag(λ)Uvi. Note that the feature selection has also
been performed on the basic vectors of the dictionary. The coeffi-
cient vector, vi, can be regarded as the new representation of the
i-th sample in this new space with respect to the weighted basic
vectors.

We further hope that the sparse representation respects the
intrinsic manifold structure of the λ-weighted feature space. The
manifold structure is represented by a nearest neighbor graph, Gλ,
constructed from the training set. Gλ has n nodes, and each node
represents a sample. The graph affinity matrix, W λ

= [W λ
ij ] ∈

Rn×n, can be constructed from the n λ-weighted sample feature

vector using a Gaussian kernel, W λ
ij = exp(−

∥xλi −xλj ∥
2

σij
) (Belanovic,

Valcarcel Macua, & Zazo, 2012), if xλ
j is among the nearest

neighbors of xλ
i , and 0 otherwise.

To obtain the optimal feature weights, λ, and the sparse repre-
sentation {vi} for samples in X with the corresponding dictionary,
U , simultaneously, we propose the following optimization prob-
lem:

min
U,{vi},λ

n
i=1

∥diag(λ)(xi − Uvi)∥
2
+ α

n
i=1

∥vi∥1

+ β

n
i,j=1

∥vi − vj∥
2W λ

ij

s.t.
d

l=1

λl = 1, λl ≥ 0.

(2)

The objective function to be minimized above is composed of
three terms and weighted by trade-off parameters, α and β , which
could be set by cross-validation. The first term is to preserve
the sample fidelities between the diag(λ)xi and its approximation
diag(λ)Uvi. The second l1-norm-based term determines that the
representation coefficient vectors, vi, are sparse. The last term
is used to embed the manifold information into the sparse
representations. If twoweighted sample feature vectors, xλ

i and xλ
j ,

are close in the intrinsic geometry of the data distribution, i.e,W λ
ij is

big, then vi and vj, the sparse representations of these two samples,
are also close to each other. Moreover, the constraints

d
l=1 λl =

1, λl ≥ 0 are applied to λ to prevent negative contributions by the
features or shrinking of feature weights. This formula makes two
main contributions:
• The first is to apply the feature weighting to both the original

feature vectors and the basic vectors. This is implemented
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