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a b s t r a c t

In this paper, using the idea of successive approximation, we propose a neural network to solve convex
quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential
inclusion. Different from the existing neural network for CQBPP, the model has the least number of
state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions
and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can
approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation
results on two numerical examples and the portfolio selection problem show the effectiveness and
performance of the proposed neural network.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Bilevel programming problems (BPPs) are hierarchical opti-
mization problems in which the constraint region is implicitly
determined by another optimization problem. The BPP can be for-
mulated as follows:

min
x

F (x, y)
s.t. H (x, y) ≤ 0

y ∈


min
y

f (x, y)

s.t. h (x, y) ≤ 0
x ∈ X, y ∈ Y

(1)

where X ⊂ Rn, Y ⊂ Rm, and H , h are vector valued functions of di-
mensions p and q. F and f are real-valued functions of appropriate
dimensions.

Numerous applications in science and engineering, such as net-
work design, transport system planning, management and eco-
nomic policy, can be formulated as BPP. Fernandez-Blanco, Arroyo,
and Alguacil (2012) constructed a general bilevel programming
framework for alternative market-clearing procedures dependent
on market-clearing prices. Using bilevel programming and swarm
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intelligence technique, Zhang, Zhang, Gao, and Lu (2011) presented
a competitive strategic bidding optimization problem in electricity
markets. Yang, Zhang, He, and Yang (2009) constructed a bilevel
programming model for the flow interception problem with cus-
tomer choice. So many researchers have made deep research in
this field, including the theory, algorithm and application of bilevel
programming (Amouzegar, 1999; Dempe, 2002; Etoa, 2010; Luo,
Pang, & Ralph, 1996; Teng & Li, 2002; Vicente, Savard, & Júdice,
1994; Wang, Jiao, & Li, 2005). In the past years, a variety of numer-
ical algorithms have been developed for BPP. However, in many
engineering applications, real-time solutions are often needed. For
such real-time applications, neural networks based on circuit im-
plementation (Hopfield & Tank, 1985) are more competent.

Over the years, neural networks for optimization and their
engineering applications have been widely investigated. Tank
and Hopfield applied the Hopfield network for solving linear
programming problems (Hopfield & Tank, 1985; Tank & Hopfield,
1986), which motivated the development of neural networks for
solving linear programming (Liu, Cao, & Chen, 2010; Wang, 1993;
Xia, 1996; Xia & Wang, 1995), variational inequalities (Cheng,
Hou, & Tan, 2008; Gao, Liao, & Qi, 2005; Hu & Wang, 2006,
2007), nonlinear programming (Bian & Chen, 2012; Forti, Nistri,
& Quincampoix, 2004, 2006; Hosseini, Wang, & Mohamma, 2013;
Liu, Dang, & Huang, 2013; Liu, Guo, & Wang, 2012; Liu & Wang,
2011, 2013; Xia & Wang, 2004) and so on. These neural networks
are essentially governed by a set of dynamic systems characterized
by an energy function, which is the combination of the objection
function and constraints of the original optimization problem, and
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three common techniques, such as penalty functions, Lagrange
functions and primal and dual functions, which are used to
construct neural networks for solving the optimization problem.

Recently, neural networks for solving BPP have received atten-
tion in the literature (Shih, Wen, Lee, Lan, & Hsiao, 2004), (Hu, Gao,
Fu, & Lv, 2010; Lan,Wen, Shih, & Lee, 2007; Lv, Chen, &Wan, 2010;
Lv, Hu, Wang, & Wan, 2008; Sheng, Lv, & Xu, 1996). Based on the
Frank–Wolfe method, Sheng et al. (1996) first proposed a neural
network to solve a class of BPPs appearing in the algorithm. Shih
et al. (2004) utilized the dynamic behavior of neural networks to
solve multiobjective programming and multilevel programming
problems. Lv and his colleagues (Hu et al., 2010; Lan et al., 2007;
Lv et al., 2010, 2008) presented neural networks for solving the
bilevel linear programming problem (BLPP), convex quadratic BPP
andnonlinear BPP. These neural networks for solving BPP are based
on Lagrange functions. However, due to the use of Lagrange mul-
tipliers, the number of state variables increased doubly, which en-
larged the scale of network. Recently, some neural networks (Liu
et al., 2010, 2013, 2012; Liu &Wang, 2011) for nonlinear optimiza-
tion are constructed based on the penalty function, which can be
used to reduce the scale of neural networks. Therefore, there is an
urgent and significant need to reduce the scale of neural networks
for solving BPP.

In this paper, following the Karush–Kuhn–Tacker optimality
conditions (Facchinei, Jiang, & Qi, 1999), we first transform the
convex quadratic bilevel programming problems (CQBPPs) into a
single level problem. Then an approximation equivalent nonlin-
ear optimization problem can be obtained through smoothing the
single level problem. In order to solve the approximation equiva-
lent problem effectively, based on themethod of penalty functions
and the theory of differential inclusions, nonautonomous neural
network and neural sub-networks can be constructed. Compared
with existing neural networks for CQBPP (Lv et al., 2010), the true
power and advantage of our neural networks lie in simple struc-
ture and the least number of state variables, and their dynamical
behavior and optimization capabilities are analyzed in the frame-
work of nonsmooth analysis (Clarke, 1983) and the theory of dif-
ferential inclusions (Aubin & Cellina, 1984). It is shown that the
limit equilibriumpoints sequence of the proposed neural networks
can approximately converge to an optimal solution of CQBPP under
certain conditions. Simulation results on numerical examples and
the portfolio selection problem show the effectiveness and perfor-
mance of the neural network for solving CQBPP.

The remainder of this paper is organized as follows. In the next
section, the preliminaries relevant to CQBPP are introduced. In Sec-
tion 3, the nonautonomous neural network is derived. The conver-
gence of the proposed neural network is proved in Section 4. In
Section 5, neural sub-networks for solving CQBPP are constructed.
Simulation results on two numerical examples and the portfolio
selection problem are given in Section 6 to demonstrate the effec-
tiveness and performance of the neural network. Finally, Section 7
concludes this paper.

Notation: Given column vectors x = (x1, x2, . . . , xn)T and y =

(y1, y2, . . . , yn)T , ⟨x, y⟩ = xTy =
n

i=1 xiyi is the scalar product

of x, y, and ∥x∥1 =
n

i=1 |xi|, ∥x∥2 =

n
i=1 x

2
i , x

2
=


x21,

x22, . . . , x
2
n

T , √x =
√

x1,
√
x2, . . . ,

√
xn

T , 1n =
T

[1, 1, . . . , 1]  
n

,

R1
+

= [0, +∞), ε̇ (t)2m+n+q =
T

[ε̇ (t) , ε̇ (t) , . . . , ε̇ (t)]  
2m+n+q

.

2. Preliminaries

In this section, some models, assumptions and lemmas about
CQBPP are introduced, which are needed in the following devel-
opment. If F and f are quadratic functions, and H and h are linear
constraints, problem (1) gives rise to the following

(UP) min
x≥0

F(x, y) =
1
2
(xT , yT )


C1 C3

CT
3 C2

 
x
y


+cT1 x + dT1y

s.t. A1x + B1y ≤ b1

(LP) min
y≥0

f (x, y) =
1
2
yTQy + yTDx + dT2y

s.t. A2x + B2y ≤ b2

(2)

where c1 ∈ Rn, d1, d2 ∈ Rm, C1 ∈ Rn×n, Q , C2 ∈ Rm×m, D, CT
3 ∈ Rm×n,

A1 ∈ Rp×n, B1 ⊂ Rp×m, A2 ∈ Rq×n, B2 ⊂ Rq×m, b1 ∈ Rp, b2 ∈ Rq. The
term (UP) is called the upper level problem and (LP) is called the
lower level problem. At the UP, the decision maker has to choose
first a vector x ∈ X to minimize his objective function F ; then un-
der this decision the LP decision maker has to select the decision
vector y ∈ Y that minimizes his own objective f . Throughout the
rest of the paper, we make the following assumptions.

Assumption 1. The constraint region of the above bilevel pro-
gramming problem

S = {(x, y) : x ≥ 0, y ≥ 0, A1x + B1y ≤ b1, A2x + B2y ≤ b2}

is nonempty and compact.

Assumption 2. C =


C1 C3
CT
3 C2


and Q are positive semi-definite

matrices.

FromFacchinei et al. (1999),we can reduce the bilevel program-
ming problem to the one-level programming problem by replacing
the lower-level problemwith its Karush–Kuhn–Tacker (KKT) opti-
mality condition. The KKT reformulation of CQBPP follows:

min F (x, y)
s.t. A1x + B1y ≤ b1

A2x + B2y ≤ b2
Qy + Dx + d2 + BT

2u − υ = 0
uT (b2 − A2x − B2y) = 0

υTy = 0
x, y, u, υ ≥ 0

(3)

where u ∈ Rq, υ ∈ Rm. Problem (3) is non-convex and non-
differentiable, moreover the regularity assumptions which are
needed for successfully handling smooth optimization problems
are never satisfied and it is not good for using the neural net-
work approach to solve the problem. Dempe (2002) presented
the smoothing method for solving BPP. Following this smoothing
method, we can propose a neural network approach to solve prob-
lem (3) in the next section.

Let ε ∈ R+ be a parameter. Define the functionΦε : R2
→ R by

Φε (a, b) =


a2 + b2 + 2ε − a − b.

The important property of this function can be stated in the
following result.

Lemma 1. For every ε > 0, we have

Φε (a, b) = 0 ⇔ a > 0, b > 0, ab = ε
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