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a b s t r a c t

This paper is concerned with the global exponential stability of switched stochastic neural networks with
time-varying delays. Firstly, the stability of switched stochastic delayed neural networks with stable
subsystems is investigated by utilizing the mathematical induction method, the piecewise Lyapunov
function and the average dwell time approach. Secondly, by utilizing the extended comparison principle
from impulsive systems, the stability of stochastic switched delayed neural networks with both stable
and unstable subsystems is analyzed and several easy to verify conditions are derived to ensure the
exponential mean square stability of switched delayed neural networks with stochastic disturbances. The
effectiveness of the proposed results is illustrated by two simulation examples.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks have been extensively studied over the past
few decades because of their applications in many areas, such
as signal processing, associative memory, pattern recognition,
combination optimization and so on (Haykin, 1999; Liu, Xiong,
DasGupta, & Zhang, 2006; Rutkowski, 2004; Tang, Gao, & Kurths,
2013; Xia &Wang, 2004). In the implementation of artificial neural
networks, time-delays are unavoidable due to the finite switching
speed of amplifiers. It is well-known that time-delaysmay result in
oscillation and instability (Liu, Lu, & Chen, 2011; Liu, Wang, Liang,
& Liu, 2009; Niculescu & Gu, 2004). Moreover, noise disturbances
can cause an instability and poor performance in neural networks.
Actually, the synaptic transmission in real neural networks can be
viewed as a noisy process introduced by random fluctuations from
the release of neurotransmitters and other probabilistic causes
(Cai, Huang, Guo, &Chen, 2012;Huang,Huang, &Chen, 2012; Liang,
Wang, Liu, & Liu, 2008; Tang&Wong, 2013; Tang, Zou, Lu, & Kurths,
2012). Therefore, time-delays and noise disturbances can heavily
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affect the dynamical behaviors of neural networks, and thus it
is necessary to investigate the effects of time-delays and noise
disturbances on the stability of neural networks at the same time.
In recent years, a variety of competing stability conditions have
been established for stochastic delayed neural networks (Karimi
& Gao, 2010; Li, Gao, & Shi, 2010; Shen & Wang, 2012; Tang, Gao,
Kurths, & Fang, 2012; Tang, Wang, Gao, Swift, & Kurths, 2012;
Wang, Liu, Li, & Liu, 2006; Zhang, Tang, Fang, &Wu, 2012; Zhang &
Wang, 2008; Zhou, Tong, Gao, Ji, & Su, 2012; Zhou, Xu, Zhang, Zou,
& Shen, 2012).

Among various types of neural networks, switched neural
networks have been recognized to be a natural and exact way to
model the phenomenon of information latching, and the abrupt
phenomenon such as deterministic or random failures and the
change of interconnections in subsystems (Lin & Antsaklis, 2009).
Recently, the stability analysis of neural networks with Markovian
switching or arbitrary switching have been investigated in Shen
and Wang (2009), Tang, Gao, Zou, and Kurths (2013), Wu, Feng,
and Zheng (2010); Wu, Shi, Su, and Chu (2011), Yang, Cao, and
Lu (2012), Zhang and Gao (2010), Zhang and Shi (2009), Zhang
and Yu (2009) and Zhu and Cao (2012). For neural networks with
Markovian switching, the exponential stability for bidirectional
associative memory and Cohen–Grossberg neural networks with
Markovian switching was analyzed in Huang and Cao (2011) and
Zhu and Cao (2012). In Shen and Wang (2009), the almost sure
exponential stability of recurrent neural networks withMarkovian
switching was investigated by means of a generalized stochastic
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Halanay inequality. On the other hand, for neural networks with
arbitrary switching, there has been an enormous growth of interest
in using the average dwell time approach to deal with the stability
problemof switched systemsdue to its effectiveness and simplicity
(Li & Wang, 2013; Wu et al., 2010, 2011; Zhang & Gao, 2010;
Zhang & Shi, 2009; Zhang, Tang, Miao, & Du, 2013; Zhang & Yu,
2009). For example, based on the average dwell time method,
the exponential stability criteria were obtained for continuous-
time switched neural networks with constant and time-varying
delays inWu et al. (2010). InWu et al. (2011), the delay-dependent
stability problemwas examined for switchedneural networkswith
time-varying delays, and the state decay estimate was explicitly
given.

Most of the existing results are usually assumed that all the
subsystems of switched systems are stable, which neglects the
intrinsic features of practical switched systems. For example,
subsystems might be unstable due to the failure of a component
or abrupt disturbances. Therefore, it is more practical to consider
switched systems with both stable and unstable subsystems (Li,
Feng, & Huang, 2008; Liu & Marquez, 2007; Wei, Jie, & Ping, 2011;
Wei & Zhang, 2006; Zhai, Hu, Yasuda, & Michel, 2001). The mean
square stability for switched stochastic delay-free systems with
both stable and unstable subsystems was analyzed by utilizing
the Bellman–Gronwall inequality (Wei & Zhang, 2006), and the
pth moment stability for switched stochastic delay-free systems
was further obtained in Wei et al. (2011). In Li et al. (2008),
the stability of impulsive switched delayed neural networks
with both stable and unstable subsystems was investigated by
using the dwell time approach. Two types of impulsive neural
networks were considered: neural networks with only stable
subsystems and neural networks with both stable and unstable
subsystems, respectively. However, stochastic perturbations are
neglected primarily due to their methods confined to analysis
of deterministic systems. In addition to this limitation, for each
subsystem, an upper and a lower bound are assumed to derive
the stability of switched neural network. Moreover, almost all the
research efforts on the stability of switched systems with both
stable and unstable subsystems have assumed that the ratio of the
total time running on all stable to unstable subsystems is less than a
constant, this assumption implies that stable subsystems are active
at first, then the unstable subsystems follow. However, in reality, it
is impractical to ensure that stable subsystems can always be active
at the beginning (Lin & Antsaklis, 2009).

The aforementioned discussion has motivated an investigation
into the following questions: (1) Is it possible for us to carry out
stability analysis of switched stochastic delayed neural networks
with stable subsystems or switched stochastic delayed neural net-
works with both stable subsystems and unstable subsystems?
(2) What kind of conditions can guarantee the exponential stabil-
ity of switched stochastic delayed neural networks with both sta-
ble and unstable subsystems? (3) Howdo the systems’ parameters,
such as internal time-delays, the intensity of stochastic perturba-
tions and the switching rules, affect the stability performance of
switched stochastic delayed neural networks? (4) Can we estab-
lish stability criteria with relatively loose constraints of the sub-
systems’ active time?

In this paper, the stability problem of global exponential stabil-
ity for two types of switched stochastic neural networks are con-
sidered: systems with only stable subsystems and systems with
both stable and unstable subsystems. By using the average dwell
time approach, the comparison principle and the stochastic analy-
sis techniques, the global exponential stability of switched stochas-
tic delayed neural networks is investigated. The contributions of
this paper are listed as follows: (1) the global exponential stability
of switched stochastic neural networks with time-varying delays

is investigated, which is more general and encompasses some re-
cently developed models as special cases; (2) the stability prob-
lems are dealt with not only switched delayed neural networks
with only stable subsystems, but also switched neural networks
with both stable and unstable subsystems; (3) based on the com-
parison principle, a novel approach is proposed to deal with the
stability analysis of switched stochastic delayed neural networks,
and some easy to verified conditions are derived to remove some
restrictive constraints on subsystems’ active time.

The rest of this paper is organized as follows. In Section 2,
the model of switched stochastic delayed neural networks is pre-
sented, together with some notations, definitions and lemmas.
In Section 3, the global exponential stability criteria are derived
for switched stochastic neural networks with time-varying delays.
This section is divided into two subdivisions. The first subdivision
focuses on the case of switched neural networks with stable sub-
systems, whereas the second subdivision concentrates on the case
of switched neural networkswith both stable and unstable subsys-
tems. Finally, two simulation examples are given to illustrate the
effectiveness of our results.

Notations: Rn and Rn×m denote the n-dimensional and the set
of all n × m matrices. Let N = 1, 2, . . . ,R+

= [0,+∞) and
the superscript ‘‘T ’’ denotes the transpose of a matrix or vector.
For any matrix A, λmax(A) denotes the largest eigenvalue of A and
∥A∥ =


λmax(ATA). Let ω(t) = [ω1(t), ω2(t), . . . , ωn(t)]T be

an n-dimension Brown motion defined on a complete probability
space (Ω,F , P) with a natural filtration (i.e., {Ft} = σ(ω(s)) :

0 ≤ s ≤ t). For −∞ < a < b < ∞, we say that a function from
[a, b] to Rn is piecewise continuous, if the function has at most a
finite number of jumps discontinuous on (a, b] and are continuous
from the right for all points in [a, b). Given τ > 0, PC([−τ , 0]; Rn)
denotes the family of piecewise continuous functions from [−τ , 0]
to Rn with norm ∥ϕ∥ = sup−τ≤θ≤0 |ϕ(θ)|. Let C1,2 denote the
family of all nonnegative functionsV (t, x, i) on [t0−τ ,∞)×Rn

×Γ

that are continuously once differentiable in t and twice in x. For
t ≥ t0, let PC2

Ft
([−τ , 0]; Rn) be the family of Ft-adapted and

PC([−τ , 0]; Rn)-valued randomvariablesϕ such that E∥ϕ∥
2 < ∞,

where E denotes the expectation operator. For function ψ : R →

R, denote ψ(t−) = lims→0− ψ(t + s), and the Dini derivative of
ψ(t) is defined as D+ψ(t) = lim sups→0+(ψ(t + s)− ψ(t))/s.

2. Preliminaries

In this section, some preliminaries including model formula-
tion, lemmas and definitions are presented.

Consider the following switched stochastic neural network
with time-varying delays

dx(t) = [−Aσ(t)x(t)+ Bσ(t)f (x(t))+ Cσ(t)f (x(t − τ(t)))]dt

+ g(x(t), x(t − τ(t)), σ (t))dω(t), (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector
associated with the n neurons; σ(t) : [0,∞) → Γ = {1, 2,
. . . ,m} is a piecewise constant function, continuous from the
right, specifying the index of the active subsystem, i.e. σ(t) =

kn ∈ Γ for t ∈ [tn, tn+1), where tn is the nth switching time
instant; Ai is a diagonal matrix with positive entries, Bi and Ci
are the connection weight matrices, where i ∈ Γ ; f (x(t)) =

(f1(x(t)), f2(x(t)), . . . , fn(x(t)))T denotes the neuron activation
function; the noise perturbation g : Rn

× Rn
× Γ → Rn×m

is a Borel function. τ(t) is a time varying delay satisfying 0 ≤

τ(t) ≤ τ , and ξ(t) = x(t − τ(t)) ∈ PC2
Ft0
([−τ , 0]; Rd) is the

initial value of (1). Let xt = x(t − τ(t)) for convenience. For the
nonlinear function f (·) and the noise perturbation g(·), we make
the following assumptions.
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