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In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg
neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of
retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence
of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions
for the global exponential stability and convergence of the neural networks, in terms of nonsmooth
analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth
condition) and monotonicity of the discontinuous neuron activation functions, our results will also be
valid. Moreover, our results extend previous works not only on discrete time-varying and distributed
delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete
time-varying and distributed delayed neural networks with discontinuous activations. We give some

Differential inclusion

numerical examples to show the applicability and effectiveness of our main results.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks with discontinuous (or non-Lipschitz, or non-
smooth) neuron activations, have been found useful to address
a number of interesting engineering tasks, such as dry friction,
impacting machines, systems oscillating under the effect of an
earthquake, power circuits, switching in electronic circuits, linear
complementarity systems, and many others, and therefore much
efforts have been devoted to analyzing the dynamical behavior of
neural networks with discontinuous activations (Bartolini, Parodi,
Utkin, & Zolezzi, 1999; Chong, Hui, & Zak, 1999; Cortés, 2008;
Danca, 2002; Forti & Nistri, 2003; Forti, Nistri, & Papini, 2005; Jong
et al., 2004; Utkin, 1977, 1978, 1992). In addition, the analysis of
discontinuous neural network systems can reveal many specially
interesting and important traits of the dynamics such as the
phenomenon of convergence in finite time toward the equilibrium
point or limit cycle. Thus, it is of practical importance to explore the
dynamical behaviors of discontinuous neural network systems.
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It is well known that, under the framework of the theory of
Filippov differential inclusions, the paper (Forti & Nistri, 2003) is
the first one to deal with the global stability of a neural network
modeled by a differential equation with a discontinuous right-
hand side. As Forti and Nistri (2003) pointed out, a brief review of
some common neural network models reveals that neural network
systems with discontinuous neuron activations are important
and do frequently arise in the applications. In fact, consider the
classical Hopfield neural networks with graded response neurons
(Hopfield, 1984). Under the standard assumption of high-gain
amplifiers, the neuron activations closely approach discontinuous
and comparator functions. In addition, neuron activation with
very-high gain is frequently encountered in the neural network
applications for solving constrained optimization problems via
a sliding mode approach (Chong et al., 1999; Forti, Nistri, &
Quincampoix, 2004).

In the subsequent literature, many considerable efforts have
been devoted to investigate the neural network system with
discontinuous activation functions. In Forti, Grazzini, and Nistri
(2006), Forti et al. (2005), Liu, Liu, and Xie (2012), Lu and
Chen (2005), Nie and Cao (2012), Wang and Zhou (2012) and
Xiao, Zeng, and Shen (2013), a series of results were obtained
for the global stability of the unique equilibrium point of the
delayed neural networks with discontinuous or non-Lipschitz
activations. In Cai, Huang, Guo, and Chen (2012), Chen and Song
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(2010), Liu and Cao (2009), Wu and Li (2008), Wu and Shan
(2009) and Xue and Yu (2007), by using the theory of fixed
point in differential inclusion and Lyapunov-like approach, the
authors analyzed the problems of global exponential stability of
the periodic solutions for various neural network systems with
discontinuous activations, respectively. In Lu and Chen (2008),
Qin, Xue and Wang (2013), Wang and Huang (2012), the authors
investigated the existence, uniqueness and global stability of
almost periodic solutions for various neural network systems with
discontinuous activations, respectively. However, all discussions
in these papers are based on the assumption that the activation
functions are monotonically nondecreasing. It is worth pointing
out that, the detailed shape of the activation does not matter very
much as long, since its growth is dominated by the passive decay
that stabilizes the model.

To overcome this fault, the papers, such as Cai and Huang
(2011), Guo and Huang (2009), Huang, Wang, and Zhou (2009),
Li and Wu (2009), Liu and Cao (2010), Wang, Huang, and Guo
(2009a,b) and Xiao et al. (2013), considered the following unilat-
eral Lipschitz-like condition for the discontinuous activation func-
tions g;:

(H1) (unilateral Lipschitz-like condition): foreachi =1, 2, .. .,
n, there exists a constant L;, such that for any two different numbers
u,v € R, Vy; € colgi(w)], & € colgi(v)],

Vi — &
u—v

where co[gi(u)] = [g (), g ()] and g~ (w) = limy_,- g(s),
gf(u) = lim,_, ,+ g(s). However, the unilateral Lipschitz-like con-
dition for the discontinuous activation functions have often been
severely criticized. One of the criticisms is that in such a model, the
discontinuous activation functions should satisfy the restriction
conditions g;" (o) > g (p}) (where gi(s) is discontinuous at point
p,’;). This assumption does not match with the actual. For exam-
ple, see the Example 4.1 of Cai et al. (2012). In addition, as pointed
out by Gonzalez (2000), to truly exploit the potential of neural net-
works, a nonlinear activation function must be used. Virtually all
neural networks use nonlinear activation functions at some point
within the network. When dealing with a dependent variable that
is not bounded, we could choose an unbounded nonlinear activa-
tion function, such as —x3, x?, etc. Clearly, the activation functions
He%ﬂx, —x3, x* do not satisfy the unilateral Lipschitz-like condi-
tion.

Hence, the more practical and interesting model of neuron
network is, in such model the discontinuous activation functions
maybe not satisfy the nondecreasing or the unilateral Lipschitz-
like condition. One of the contributions of this paper is: dropping
the assumptions on monotonicity and unilateral Lipschitz-like
condition of the discontinuous activation functions, we study the
global stability of periodic solutions for neuron network systems.

Note that the properties of periodic solutions are of great
interest, which have been successfully applied in many neural
network systems, such as many biological and cognitive activities
(for example heartbeat, respiration, mastication, locomotion,
and memorization) require repetition. Periodic oscillations in
recurrent neural networks have found many applications, such
as associative memories (Nishikawa, Lai, & Hoppensteadt, 2004),
pattern recognition (Chen, Wang, & Liu, 2000; Wang, 1995),
machine learning (Ruiz, Owens, & Townley, 1998; Townley et al.,
2000), and robot motion control (Jin & Zacksenhouse, 2003). In
particularly, an equilibrium point can be regarded as a special
case of periodic solution for neural networks with arbitrary period.
Therefore, the analysis of periodic solutions for neural networks
are more general and interesting.

In many practical applications of neural networks, for example,
control, image processing, pattern recognition, signal processing

> L

and associative memory, time delays are often inevitable, since
the finite switching speed of amplifiers and communication time.
For instance, in the signals transmitted among the cells, one must
introduce time delays to process moving images (see Civalleri,
Gilli, & Pandolfi, 1993). As pointed by Jiang et al. that, time
delayed neural networks can also capture the dynamic nature
of speech to achieve superior phoneme recognition performance
using standard error back-propagation (BP) (see Jiang, Gielen,
Deng, & Zhu, 2002). For more knowledge about the practical
design and application of time-delayed neural networks we refer
to Chen and Song (2010), Foss, Longtin, and Milton (1996), Ghosh,
Rho, Mcintosh, Kotter, and Jitsa (2008), Izhikevich (2006) and
Marcus and Westervelt (1989) etc. According to Chen and Song
(2010), time delays can affect the stability of the neural network
systems and may lead to some complex dynamic behaviors
such as oscillation, chaos and instability. Moreover, the issue of
stability analysis of the discontinuous dynamical systems is also
a significant research topic in neural theory. Thus, it is of great
importance to explore the dynamical behaviors of neural networks
with time delays, such as the existence, uniqueness, stability and
global exponential stability of periodic solutions, etc.

Moreover, as pointed by Forti et al., it is interesting and
important to investigate discontinuous neural networks with
more general delays, such as time-varying or distributed ones.
For example, in electronic implementation of analog neural
networks, the delays between neurons are usually time-varying
and sometimes vary violently with time due to the finite switching
speed of amplifiers and faults in the electrical circuit (see Hou &
Qian, 1998 and Huang, Ho, & Lam, 2005). Thus, we consider the
more general type of delays, such as time-varying and distributed
ones, which are general more complex and therefore more difficult
to deal with. From the theoretical point of view, when the
time-varying delays and distributed delays are introduced into
the discontinuous neuron activations, the theory of differential
inclusions with memory (i.e. functional differential inclusions)
is a standard and effective tool to deal with the problems of
dynamical behaviors for neural networks modeled by time-varying
and distributed differential equations with discontinuous right-
hand sides. According to Aubin and Cellina, functional differential
inclusions express that the velocity depends not only on the state
of the system at every instant, but depends upon the history of
the trajectory until this instant (Aubin & Cellina, 1984). Generally
speaking, functional differential inclusion system with time-
varying and distributed delays can be regard as a generalization of
the system described by system with time-varying and distributed
delays. Also any mathematical model of the time-varying and
distributed delayed dynamic system is the special case of the
functional differential inclusion system when uncertainties exist
in such a dynamic system.

To best the author’s knowledge, only a few papers have studied
time-varying and distributed delayed neural networks with dis-
continuous activations via functional differential inclusions. Under
the framework of the theory of Filippov differential inclusions, Liu
et al. (2012) has discussed the global convergence of neural net-
works with mixed time-varying delays and discontinuous activa-
tions. He, Lu, and Chen (2009, 2010) investigated the nonnegative
periodicity for the neural networks with mixed time-varying de-
lays and discontinuous activations.

Cohen-Grossberg neural networks (CGNN), an important
recurrent neural networks model, which was first described by
Cohen and Grossberg in 1983 (Cohen & Grossberg, 1983), have
aroused a tremendous surge of investigation in these years.
However, there is not much work on CGNN discontinuous neuron
activations with time delays. Meng, Huang, Guo, and Hu (2010)
studied the stability of delayed CGNN with discontinuous neuron
activation. Some sufficient conditions are obtained to ensure the
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