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a b s t r a c t

This paper presents a set of reconfigurable analog implementations of piecewise linear spiking neuron
models using second generation current conveyor (CCII) building blocks. With the same topology and
circuit elements, withoutW/Lmodificationwhich is impossible after circuit fabrication, these circuits can
produce different behaviors, similar to the biological neurons, both for a single neuron aswell as a network
of neurons just by tuning reference current and voltage sources. The models are investigated, in terms
of analog implementation feasibility and costs, targeting large scale hardware implementations. Results
show that, in order to gain the best performance, area and accuracy; these models can be compromised.
Simulation results are presented for different neuron behaviors with CMOS 350 nm technology.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spiking neural networks (SNNs) have received considerable
attention and an increasing research interest in developing ar-
tificial neural networks during the past few years (Gerstner &
Kistler, 2002; Hodgkin & Huxley, 1952; Izhikevich, 2001, 2003,
2007), due to their behavioral resemblance to biological neu-
rons. Motivated by biological discoveries, pulse-coupled neural
networks with spike-timing are considered as an essential com-
ponent in biological information processing systems, such as
the implementation of both high-level and low-level features
of the brain like performing complex pattern recognition, mo-
tor control, autonomous learning, adaptability, robustness against
noise and fault tolerance. Implementation of these models, tar-
geting different platforms, has been the subject of studies in
terms of efficiency and large scale simulations (Andreou, Meit-
zler, Strohbehn, &Boahen, 1995; Arthur&Boahen, 2011; Camuñas-
Mesa, Acosta-Jiménez, Zamarreño-Ramos, Serrano-Gotarredona, &
Linares-Barranco, 2011; Davies, Galluppi, Rast, & Furber, 2012;
Indiveri, Chicca, & Douglas, 2006; Serrano-Gotarredona, Serrano-
Gotarredona, Acosta-Jiménez, & Linares-Barranco, 2006; Shari-
fipour & Ahmadi, 2012; Soleimani, Ahmadi, & Bavandpour, 2012;
van Schaik, 2001; Wijekoon & Dudek, 2008; Yamashita & Torikai,
2012). Although digitally implemented simulators are found to be
convenient and practical for behavioral study of neural networks,
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they are not suitable for actual biologically plausible systems, or
detailed real-time and large-scale simulations of neural systems.
Custom digital systems that exploit parallel graphical processing
units (GPUs) (Ahmadi & Soleimani, 2011) or field programmable
gate arrays (FPGAs) (Soleimani et al., 2012)may offer such capabil-
ities in future, but it is not clear how such systems could be able to
approach the density, energy efficiency and resilience of the neu-
rons and synapses which they model.

The observation that the brain operates based on analog prin-
ciples of the physics of neural computation that are fundamen-
tally different from digital principles in traditional computing, has
initiated the investigations in the field of analog implementation
of neuro-systems. Motivated by these reasons, utilizing well de-
veloped electronic components and analog circuits to mimic neu-
rological behaviors, is considered as the main choice for direct
implementation of neuro-systems. If one can provide a suitable re-
configurable platform to implement neural structures, very large
scale integration (VLSI) implementation can be used for prototyp-
ing of the neuralmodels, neural dynamics, network structures, and
learning mechanisms to test different theories. In terms of VLSI
implementation, analog implementations can replicate neural dy-
namics down to the ion channels in the neural membrane and are
fast and efficient; but they are inflexible and require a long devel-
opment time. As a midpoint in the design space, reconfigurable
platforms can provide compact and flexible solutions for biologi-
cally plausible neuro-system designers.

Many different neuron models are described by nonlinear Or-
dinary Differential Equations (ODEs) such as the Hodgkin–Huxley
model (Hodgkin & Huxley, 1952) or nonlinear ODEs with
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state-dependent resets (Gerstner & Kistler, 2002; Izhikevich, 2001,
2003, 2007). These models are based on the bio-chemical inspec-
tion of the neuron structure and mostly are expressed in the
form of differential equations. Although detailed neuron models
(Hodgkin & Huxley, 1952), can imitate most experimental mea-
surements to a high degree of accuracy, they are mostly compli-
cated and difficult to physically implement. Izhikevich (2003), has
developed a class of models for spiking neurons, which balances
the computational efficiency of integrate and fire (IF) models with
the biological plausibility and versatility of Hodgkin–Huxley type
models (Hodgkin & Huxley, 1952).

An analog circuit for implementation of the Izhikevich neu-
ron model has been reported in the literature (Wijekoon & Dudek,
2008). Although thismodel cannot exactly implement the standard
neuron model responses (Izhikevich, 2003), it allows the imple-
mentation of some cortical neuron behaviors. The spiking shapes
produced by the circuit are biologically plausible and some of the
spiking patterns can be obtained by changing two out of the four
parameters in the neuron model (Vc and Vd). The circuit has a
low reconfigurability, because the variable parameters after imple-
mentation are only two out of the four and the other parameters
are fixed.

Recently, a novel reconfigurable analog circuit implementation
of the neuron has been presented using a second generation cur-
rent conveyor (CCII) (Sharifipour & Ahmadi, 2012). This circuit is
based on a new piecewise linear (PWL) modification of the Izhike-
vich model, which can reproduce different dynamic behaviors of
the cortical neurons. Due to the regular structure of the circuit us-
ing standard building blocks, it has the capability to be realized
as an application specific reconfigurable analog device, targeting
neural networks. This can be considered as a step towards pro-
grammable analog neural integrated circuits. Moreover, the resis-
tant structure against noise and impedance matching in the input
and output, make this model a suitable choice for analog imple-
mentation of large scale neural networks. In this paper, a gener-
alized analog implementation of piecewise linear neuron models
consisting of implementation of third and fourth piecewise linear
models using reconfigurable CCII building blocks is proposed.

2. The PWL spiking neuron models

In Izhikevich (2003) proposed a model of two coupled differen-
tial equations as:

dv
dt
= 0.04v2

+ 5v + 140− u+ I

du
dt
= a(bv − u)

(1)

with the auxiliary reset equations:

v ≥ 30 mV then

v← c
u← u+ d (2)

where v represents the membrane potential of the neuron, u rep-
resents a membrane recovery variable, which accounts for the ac-
tivation of K+ ionic currents and inactivation of Na+ ionic currents
and it provides negative feedback to v. Parameters a, b, c, d are
constant values, describing neuron type. After the spike reaches
its apex (30 mV), the membrane voltage and the recovery variable
are reset according to the equations above. To improve the compu-
tational efficiency of the Izhikevich model, three piecewise linear
approximations have been proposed in Soleimani et al. (2012).

2.1. Second order piecewise linear model

The second order piecewise (2PWL) model approximates the
quadratic part of the Izhikevich model with two crossed lines. This
approximation can be formulated as:

dv
dt
= k1|v + k2| − k3 − u+ I

du
dt
= a(bv − u).

(3)

This approximation provides three degrees of freedom to achieve
the closest behavior to the original model.

2.2. Third order piecewise linear model

For the third order piecewise (3PWL) approximation the follow-
ing function is presented:

dv
dt
= k1(|v + k2| + |v − k2|)− k3 − u+ I

du
dt
= a(bv − u).

(4)

This approximation provides three degrees of freedom to achieve
the closest behavior to the original model. In terms of implemen-
tation, the 3PWL approximation is more expensive compared to
the 2PWL, but the behavior of the 3PWLmodel can be closer to the
original model by appropriate choice of the coefficients.

2.3. Fourth order piecewise linear model

The proposed fourth order piecewise (4PWL) approximation is
formulated as:

dv
dt
= k2(|v + k3| + |v − k3|)+ k1|v + k4| − k5 − u+ I

du
dt
= a(bv − u)

(5)

where k1, k2, k3,k4, k5 similar to the other PWL models, are con-
stant values. This approximation provides five degrees of freedom
for achieving the closest behavior to the originalmodel. Thismodel
requires more complex circuit implementation compared to the
other PWL models, but has a very close behavior compared to the
other models.

3. Bifurcation analysis of PWL models

This section investigates the qualitative bifurcation analysis of
the 2 and 4PWL neuron models and explains their relations to
a standard biological neuron model (Izhikevich, 2003) based on
the procedure introduced in Yamashita and Torikai (2012). Due to
similarity of the analyses across all three models, as a midpoint we
have waived the analysis of the 3PWL model.

3.1. Basic neuron responses

Resting states: The eigenvalues of the PWL dynamical systems
have a negative real part, called the nodal sink, in the states
of Fig. 1(a1–a2) therefore the intersection point of the borders
attracts any nearby point. This phenomenon is also referred to as a
stable resting state (Izhikevich, 2003).Moreover, if both eigenvalues
have positive real part, the intersection point repels any nearby
point named nodal source in Fig. 1(b1–b2). Such a phenomenon is
known as an unstable resting state.
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