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a b s t r a c t

Neural networks for implementing large networked systems such as smart electric power grids consist of
multiple inputs and outputs. Many outputs lead to a greater number of parameters to be adapted. Each
additional variable increases the dimensionality of the problem and hence learning becomes a challenge.
Cellular computational networks (CCNs) are a class of sparsely connected dynamic recurrent networks
(DRNs). By proper selection of a set of input elements for each output variable in a given application, a DRN
can be modified into a CCN which significantly reduces the complexity of the neural network and allows
use of simple training methods for independent learning in each cell thus making it scalable. This article
demonstrates this concept of developing a CCN using dimensionality reduction in a DRN for scalability
and better performance. The concept has been analytically explained and empirically verified through
application.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In many networked systems, each component’s behavior is di-
rectly affected by the behavior of other components in its neigh-
borhood and indirectly by other components that are connected
to the network far away from its neighborhood. The neighbor-
hood can be defined as the proximity with respect to certain
parameters associated with the component and the system. Exam-
ples of such systems, collectively referred to as ‘‘large networked
systems’’, are smart electric grids, transportation networks, wa-
ter distribution networks, communication networks, and sensor
networks (surveillance, monitoring, etc.). Implementation of such
systems using a DRN requires a learning method to adapt the
sets of weights such that all the functions are simultaneously ap-
proximated using the same set of weights. Using a gradient de-
scent based learningmethod such as backpropagation,weights in a
multi-layered neural network are adapted based on the gradient of
the output error with respect to theweights. Therefore, the sizes of
the input and outputweightmatrices become larger as the number
of output variables, and their corresponding inputs, increases.

In most real world problems, however, each output variable
is only dependent on a subset of input variables. Suppose O⃗ =

[O1,O2, . . . ,Oi, . . . ,ON ] is an output vector of N output variables
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where each output is a function of inputs, i.e. O⃗ = f

I⃗

where

I⃗ is a vector of input elements consisting of current and past
states as well as current and past controls (Narendra &Mukhopad-
hyay, 1997) and has a size of M ≥ N . Implementation of large
networked systems using DRNs is computationally intensive and
training challenging. In many practical systems, each output Oi of
O⃗ is a function of input elements F⃗i ⊂ I⃗ . The input element vec-
tor F⃗ consists of m elements such that m ≪ M as N becomes
large. Therefore, implementing with smaller independent neural
networks is more efficient, and training is easier and more accu-
rate. The drawback, however, is that connectivity of the compo-
nents and hence the associated dynamics may be lost.

Dynamic neural networks are necessary to learn the spatial
and temporal dynamics of complex nonlinear systems in real life
(Gupta, Jin, & Homma, 2003). Recurrence provides dynamic neu-
ral networks with the memory necessary to store the spatio-
temporal data and map inputs to the outputs (Kolen & Kremer,
2001). Cellular neural networks (CNNs) (Chua & Yang, 1988) con-
sist of neurons, called cells, having local connection only to their
neighbors. In Werbos and Pang (1996) and Wunsch (2000), cel-
lular networks are presented in which each cell is a neural net-
work, and these are referred to as CNNs. Cellular computational
networks (CCNs) are dynamic recurrent networks (DRNs) con-
sisting of a computational element (neural network or other-
wise) in each cell, and can be used to implement large networked
systems. In this article, the CCN, a scalable neural network ar-
chitecture that exploits on the property of complex networked
systems, is described. It is shown later in the article that a CCN
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Fig. 1. (a) A system of four interconnected components. (b) A TLRN for learning the
dynamics of the system. (c) Equivalent representation using fourMLPs, one for each
component. (d) Equivalent representation using a CCN.

consisting of a NN in each cell represents a sparsely connected
DRN. The development of a CCN for an electric power network is
described in this article and is compared with other neural net-
work architectures. The obtained result shows theCCNas a promis-
ing architecture for learning the dynamics of large networked
systems.

2. CCN as a sparsely connected DRN

Consider an input I⃗ of four elements [I1, I2, I3, I4] corresponding
to four components of a networked system, as shown in Fig. 1(a).
The output O⃗ = [O1,O2,O3,O4] is to be mapped to the input I⃗
using a neural network. Fig. 1(b) shows an implementation using a
time lagged recurrent neural network (TLRN) (Elman, 1990) having
a context as a feedback from the outputs. For system identification
of a component, the variables that affect its performance are used
as inputs. This involves selection of a subset of input elements
from a set of input data. Assuming that each component of the
system is affected by its nearest neighbors, the behavior of each
component can be modeled independently using a multi-layer
perceptron (MLP) as shown in Fig. 1(c) using common inputs
between neighbors. Finally, the same system is modeled using
a CCN as shown in Fig. 1(d) where delayed outputs from the
neighbors are used as the inputs to each cell. Fig. 1(c) and (d) are
almost identical in terms of the architecture (number of neurons
used in different layers). However, Fig. 1(d) can be re-arranged
as shown in Fig. 2(a) and is functionally equivalent to a sparsely
connected TLRN. Fig. 2(b) shows that setting theweights associated
with some feedback elements to zero (as shown by the dashed
lines) and adding additional connections between the neurons (as
shown by the dotted connections) to the CCN, it will be equivalent
to a TLRN. This gives the CCN the power of a DRN with the simple
architecture of a static MLP.
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Fig. 2. (a) Re-arrangement of the cells of a CCN for comparing it against a DRN.
(b) Addition of synaptic weights between the neurons in the input and the hidden
layers across different cells will render the CCN equivalent to a DRN.

It can be inferred from the above observation that CCNs
are DRNs with sparse synaptic weights between the neurons in
different layers. A DRN can be described in vector notation by the
following equation:

O⃗(k) = g

W⃗in × I⃗(k) + W⃗c × O⃗(k − 1)


× W⃗o (1)

where W⃗in and W⃗c represent the synaptic weights from the
input and context layer neurons respectively to the hidden layer
neurons, and W⃗o represents the set of weights from the hidden
layer neurons to the output neurons. The symbol ‘×’ represents
a cross product and ‘g ’ represents the activation function in the
hidden neurons. Based on the above discussion, the equation for
the CCN of Fig. 2(a) can be written as

Oi = gi

(W⃗in)i × F⃗i(k)


× (W⃗o)i (2)

where F⃗i(k) = [⃗Ii(k), O⃗i−1(k − 1), O⃗i+1(k − 1)] is the input to each
cell and O⃗i−1(k− 1) and O⃗i+1(k− 1) are the time lagged outputs of
connected neighbors used as inputs and provide the recurrence to
the overall structure of a CCN. The sets of input and outputweights,
(W⃗in)i and (W⃗o)i respectively, are synaptic weights between the
fully connected neurons of each cell and are each equivalent to
the subset of DRN weights W⃗in and W⃗o. Each cell is independently
trained using backpropagation. Because of only one output and
a smaller number of weights in each cell, learning is more
accurate.

A very large system consists of many multi-dimensional
variables. It is very hard to develop a neural network solution
for such a system using a single DRN that represents all the
variables, or with individual DRNs that represent each variable
in one dimension, or by reservoir computing using different sets
of readout weights for each variable in each dimension. Such
solutions do not scale up for large systems and it is hard to
train such networks without sacrificing accuracy and/or speed. By
forming a cellular structure taking advantage of the common input
elements between different variables in a given system, a multi-
layered (multi-dimensional) CCNcanbedevelopedwhere different
cells in each ‘layer’ represent the dimensions of one variable and
different layers represent the different variables. The cells are
connected to each other within and across the layers based on
the common input elements necessary for system identification of
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