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a b s t r a c t

In this paper, a new linear dimension reduction method called supervised orthogonal discriminant sub-
space projection (SODSP) is proposed, which addresses high-dimensionality of data and the small sample
size problem. More specifically, given a set of data points in the ambient space, a novel weight matrix
that describes the relationship between the data points is first built. And in order to model the manifold
structure, the class information is incorporated into the weight matrix. Based on the novel weight matrix,
the local scatter matrix as well as non-local scatter matrix is defined such that the neighborhood struc-
ture can be preserved. In order to enhance the recognition ability, we impose an orthogonal constraint
into a graph-basedmaximummargin analysis, seeking to find a projection that maximizes the difference,
rather than the ratio between the non-local scatter and the local scatter. In this way, SODSP naturally
avoids the singularity problem. Further, we develop an efficient and stable algorithm for implementing
SODSP, especially, on high-dimensional data set. Moreover, the theoretical analysis shows that LPP is a
special instance of SODSP by imposing some constraints. Experiments on the ORL, Yale, Extended Yale
face database B and FERET face database are performed to test and evaluate the proposed algorithm. The
results demonstrate the effectiveness of SODSP.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Face recognition has attracted many researchers in the area
of pattern recognition, machine learning, and computer vision
because of its immense application potential over the past last
decades (Belhumeur, Hespanha, & Kriengman, 1997; He, Zheng, &
Hu, 2011; Jiang,Mandal, & Kot, 2008; Liu, Cheng, Yang, & Liu, 1992;
Wang, Sung, & Yau, 2010; Wang, Xu, Zhang, & You, 2010; Zhao,
Chellappa, Phillips, & Rosenfeld, 2003; Zheng, Lai, & Yuen, 2005).
Numerous new techniques have been developed to handle differ-
ent problems in face recognition, such as illumination and pose.
The appearance based method is one of the most successful tech-
niques. By using appearance based methods, an image is always
represented by a high dimensional vector of pixels, which makes
the storage space high and increases the computational cost. In ad-
dition, the high dimensionality also decreases the discrimination
of face images. To overcome the curse of dimensionality, a natu-
ral way is to learn a subspace in which we can detect the reduced
intrinsic dimension in the high dimensional image space. Princi-
pal component analysis (PCA) (Swets & Weng, 1996; Turk & Pent-
land, 1991) is a classical linear method for unsupervised subspace
learning that transforms a data set consisting of a large number of
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interrelated variables to a new set of uncorrelated variables, while
retaining most of the input data variations. Although PCA can gen-
erate the best approximations of the original samples, it does not
take into account the separability between samples of different
classes when extracting features. It is recognized that PCAmay fail
in capturingmuchuseful discriminant information. Linear discrim-
inant analysis (LDA) (Belhumeur et al., 1997) is another effective
linear subspace algorithm for supervised learning. Differing from
PCA, LDA computes a linear transformation which simultaneously
maximizes the between-class scatter and minimizes the within-
class scatter, achievingmaximumdiscrimination. However, the in-
trinsic limitation of LDA is that its objective function requires the
within-class covariance matrix to be nonsingular. But when the
number of samples available is much smaller than the dimension-
ality of the sample space, LDA will suffer from the small sample
size (SSS) problem.

Recently, many researchers pointed that large amounts of high-
dimensional data probably lie on a nonlinear manifold (Cai, He,
& Han, 2007; He, Cai, Yan, & Zhang, 2005; Kouropteva, Okun, &
Pietikainen, 2003; Tenenbaum, de Silva, & Langford, 2000; Yan,
Xu, Zhang, & Zhang, 2007). Linear models, such as PCA and LDA
are particularly well suited for scenarios where the data originates
from a subspace of the high-dimensional ambient space. On the
other hand, data modeled by highly nonlinear manifolds cannot be
well approximated by linear subspaces. To remedy this deficiency,
a number of nonlinear dimension reduction techniques have been
developed to learn the nonlinear structure of the manifold in
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the past few years, such as isometric feature (ISOMAP) (Belkin
& Niyogi, 2003), locally linear embedding (LLE) (Roweis & Saul,
2000), and Laplacian Eigenmaps (LE) (Tenenbaumet al., 2000). This
line of research is known as manifold learning, which explores
the inherent nonlinear structure hidden in the observation space.
However, one of the limitations in many existing manifold learn-
ing methods is the out-of-sample problem (Bengio, Paiement, &
Vincent, 2003). And manifold learning, which is to pursue local-
ity characterization of the data, is not originally and essentially de-
signed for discrimination purpose. To overcome the out-of-sample
problem, Neighborhood Preserving Embedding (NPE) (Wang et al.,
2010) and Locality Preserving Projection (LPP) (He, Yang, & Hu,
2005) were proposed. LPP is essentially based on linear trans-
formation that is actually performing linear dimension reduction,
while considering manifold structure via adjacency graph. LPP and
NPE aim to preserve local structure of data but differ in that NPE is
a nonlinear learning for data embedding. Based on LPP, the Lapla-
cianfaces algorithm (He, Yang et al., 2005) was further developed
for face recognition.

The above manifold criterion is applied to Fisher criterion
and marginal Fisher analysis (MFA) (Yan et al., 2007) as well
as local Fisher discriminant analysis (LFDA) (Sugiyama, 2007),
local discriminant embedding (LDE) (Chen, Chang, & Liu, 2005),
local discriminating projection (LDP) (Zhao, Sun, Jing, & Yang,
2006), nonparametric discriminant analysis (NDA) (Li, Lin, & Tang,
2009), manifold discriminant analysis (MDA) (Wang & Chen,
2009), Locality Preserving Fisher Discriminant Analysis (LPFDA)
(Zhao & Tian, 2009), Regularized Locality preserving Discriminant
Embedding (RLPDE) (Pang, Andrew Beng, & Abas, 2012). However,
it is also noted that thosemethods often suffer from a SSS problem.

As the orthogonal projection is of desirable property and often
demonstrates good performance empirically, Ye (2006) proposed
an orthogonal LDA (OLDA) algorithm, which is to solve the ratio
trace optimization problem. Based on the LPP method, Cai, He,
Han, and Zhang (2006) proposed a feature extraction approach
namedOrthogonal Laplacianface (OLPP) algorithm by constructing
the orthogonal constraints. It builded an adjacency graph which
can best reflect the geometry of the face manifold and the class
relationship between the sample points. The optimal discriminant
vectors in an iterative way were then obtained by preserving
such a graph structure. However, OLDA and OLPP, based on Fisher
criterion, also suffer from the singularity problem.

To address the high-dimensionality of data and the SSS prob-
lem, a novel linear subspace learning technique, called supervised
orthogonal discriminant subspace projection (SODSP) is proposed
in this paper. The points below highlight several aspects of our ap-
proach:

• SODSP considers the local and non-local information at the
same time in designing the similaritymatrix, which can explore
the intrinsic structure of original data. Moreover, the class in-
formation is incorporated into the similarity matrix to model
the manifold structure and enhance the recognition ability. The
above two properties are united in SODSP by imposing an or-
thogonality constraint on the graph-based maximum margin
criterion (MMC) (Li, Jiang, & Zhang, 2006), which draws the
close samples closer while simultaneously separating the sam-
ples from different classes far enough.

• The proposed method requires the discriminant vectors to
satisfy the orthogonality constraint, which ensures that the
discriminant projection vectors are more powerful than the
classical discriminant vectors in terms of discriminant ratio in a
transformed space, and the orthogonality constraint can effec-
tively preserve the metric structure of the data.

• Computationally, SODSP completely avoids the singularity
problem incurred by many Fisher criterion based methods,

since it seeks projections that maximizes the difference be-
tween local scatter and non-local scatter, which makes SODSP
not involve any inverse matrix operation.

• In order to significantly alleviate the computational burden es-
pecially on high-dimensional data set, we develop an efficient
and stable algorithm for performing SODSP.

• We theoretically analyze the relationship between LPP and
SODSP, which shows LPP can be derived from SODSP by impos-
ing some constraints.
The rest of this paper is organized as follows. In Section 2,

we provide a brief introduction of LDA and MMC. The supervised
orthogonal discriminant subspace projection (SODSP) algorithm
is proposed in Section 3. Extensive experimental results on face
recognition are presented in Section 4 and the conclusion is pre-
sented in Section 5.

2. Related works

Let X = {x1, x2, . . . , xN} be a data set of given D-dimensional
vectors of face images. Each data point belongs to one of the c ob-
ject classes {X1,X2, . . . ,Xc}. And li is the class label ofxi, li ∈ {1, 2,
. . . , c}, where c is the number of classes. The goal of the dimen-
sionality reduction is to find a linear transformationQ ∈ RD×d that
maps each vector xi (i = i, 2, . . . ,N) in the D-dimensional space
to a vector yi in the lower d-dimensional space by yi = QTxi.

2.1. Linear discriminant analysis (LDA)

LDA is a supervised dimensionality reduction technique which
derives a projection basis that separates data points from different
classes as far as possible and compresses data points from the same
classes as compact as possible, thus achieving maximum class
discrimination in the dimensionality-reduced space. In LDA, three
scattermatrices, namely thewithin-class, between-class and total-
scattermatrices are defined as follows (Georghiades, Belhumeur, &
Kriegman, 2001; Kim & Kittler, 2005):

Sb =

c
i=1

Mi(mi − m)(mi − m)T . (1)

Sw =

c
i=1


x∈Xi

(x − mi)(x − mi)
T . (2)

St = Sb + Sw (3)
where mi denotes the mean of class i and m is the global data
mean. The number of vectors in class Xi is denoted by Mi. LDA
learns amatrix,U, whichmaximizes the ratio of the determinant of
the between-class scatter matrix to the determinant of the within-
class scatter matrix as follows

Qopt = argmax
Q

|QTSbQ|

|QTSwQ|
= [q1, q2, . . . , qd]. (4)

The solution {qi|i = 1, 2, . . . , d} is a set of generalized eigen-
vectors of Sb and Sw , i.e., Sbqi = λiSwqi. Usually, PCA is performed
first to avoid the singularity problem which the within-class scat-
ter matrix commonly encountered in face recognition (Swets &
Weng, 1996; Turk & Pentland, 1991; Zhao, Chellappa, & Nandhaku-
mar, 1998).

2.2. Maximum margin criterion (MMC)

MMC aims to maximize the average margins between different
classes in the projected space. The objective function is given by

Qopt = argmax
Q

QT (Sb − Sw)Q = [q1, q2, . . . , qd] (5)

where Sw and Sb are, respectively, the between-class scattermatrix
and the within-class scatter matrix as defined previously. The
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