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a b s t r a c t

In real-world classification problems, the class balance in the training dataset does not necessarily reflect
that of the test dataset, which can cause significant estimation bias. If the class ratio of the test dataset is
known, instance re-weighting or resampling allows systematical bias correction. However, learning the
class ratio of the test dataset is challenging when no labeled data is available from the test domain. In this
paper, we propose to estimate the class ratio in the test dataset by matching probability distributions of
training and test input data. We demonstrate the utility of the proposed approach through experiments.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most supervised learning algorithms assume that training and
test data follow the same probability distribution (Bishop, 2006;
Hastie, Tibshirani, & Friedman, 2001; Vapnik, 1998). However,
this de facto standard assumption is often violated in real-world
problems, caused by intrinsic sample selection bias or inevitable
non-stationarity (Heckman, 1979; Quiñonero-Candela, Sugiyama,
Schwaighofer, & Lawrence, 2009; Sugiyama & Kawanabe, 2012).

In classification scenarios, changes in class balance are often
observed—for example, the male–female ratio is almost fifty–fifty
in the real-world (test set), whereas training samples collected in
a research laboratory tend to be dominated by male data. Such
a situation is called a class-prior change, and the bias caused by
differing class balances can be systematically adjusted by instance
re-weighting or resampling if the class balance in the test dataset
is known (Elkan, 2001; Lin, Lee, & Wahba, 2002).

However, the class ratio in the test dataset is often unknown
in practice. A possible approach to mitigating this problem is to
learn a classifier so that the performance for all possible class
balances are improved, e.g., through maximization of the area
under the ROC curve (Clémençon, Vayatis, & Depecker, 2009;
Cortes & Mohri, 2004). Alternatively, in the minimax approach, a
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classifier is learned so as to minimize the worst-case performance
for any change in the class prior (Duda, Hart, & Stork, 2001; Van
Trees, 1968). The disadvantage of theminimax approach is that it is
often overly pessimistic. A more direct approach is to estimate the
class ratio in the test dataset and use this estimate for instance re-
weighting or resampling. We focus on this scenario under a semi-
supervised learning setup (Chapelle, Schölkopf, & Zien, 2006),
where no labeled data is available from the test domain.

Saerens, Latinne, and Decaestecker (2001) is a seminal paper
on this topic, which proposed to estimate the class ratio by
the expectation–maximization (EM) algorithm (Dempster, Laird,
& Rubin, 1977)—alternately updating the test class-prior and
class-posterior probabilities from some initial estimates until
convergence. This method has been successfully applied to various
real-world problems such as word sense disambiguation (Chan &
Ng, 2006) and remote sensing (Latinne, Saerens, & Decaestecker,
2001).

In this paper, we first reformulate the algorithm in Saerens et al.
(2001), and show that this actually corresponds to approximating
the test input distribution by a linear combination of class-
wise training input distributions under the Kullback–Leibler (KL)
divergence (Kullback & Leibler, 1951). In this procedure, the
class-wise input distributions are approximated via class-posterior
estimation, for example, by kernel logistic regression (Hastie et al.,
2001) or its squared-loss variant (Sugiyama, 2010).

Since indirectly estimating the divergence by estimating the
individual class-posterior distributions may not be the best
scheme, the above reformulation motivates us to develop a more
direct approach: matching the mixture of class-wise training
input densities to the test input distribution. Historically, non-
parametric estimation of the mixing proportions by matching

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neunet.2013.11.010

http://dx.doi.org/10.1016/j.neunet.2013.11.010
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2013.11.010&domain=pdf
mailto:christo@sg.cs.titech.ac.jp
mailto:sugi@cs.titech.ac.jp
http://dx.doi.org/10.1016/j.neunet.2013.11.010


M.C. du Plessis, M. Sugiyama / Neural Networks 50 (2014) 110–119 111

the empirical distribution functions was investigated in Hall
(1981), and its variant based on kernel density estimation has
been developed in Titterington (1983). However, these classical
approaches do not perform well in high-dimensional problems
(Sugiyama et al., 2013). Recently, KL-divergence estimation based
on direct density-ratio estimation has been shown to be promising
(Nguyen, Wainwright, & Jordan, 2010; Sugiyama et al., 2008).
Furthermore, a squared-loss variant of the KL divergence called the
Pearson (PE) divergence (Pearson, 1900) can also be approximated
in the same way, with an analytic solution that can be computed
efficiently (Kanamori, Hido, & Sugiyama, 2009). Note that the PE-
divergence and the KL divergence both belong to the f -divergence
class (Ali & Silvey, 1966; Csiszár, 1967), which share similar
properties. In this paper, with the aid of this density-ratio based
PE-divergence estimator, we propose a new semi-supervised
method for estimating the class ratio in the test dataset. Through
experiments, we demonstrate the usefulness of the proposed
method.

2. Problem formulation and existing method

In this section, we formulate the problem of semi-supervised
class-prior estimation and review an existing method (Saerens
et al., 2001).

2.1. Problem formulation

Let x ∈ Rd be the d-dimensional input data, y ∈ {1, . . . , c} be
the class label, and c be the number of classes. We consider class-
prior change, i.e., the class-prior probability for training data p(y)
and that for test data p′(y) are different. However, we assume that
the class-conditional density for training data p(x|y) and that for
test data p′(x|y) are the same:

p(x|y) = p′(x|y). (1)

Note that training and test joint densities p(x, y) and p′(x, y) as
well as training and test input densities p(x) and p′(x) are generally
different under this setup.

For the purposes of classification, we are generally interested in
selecting a classifier that minimizes the expected loss (or the risk)
with respect to the test distribution. We can rewrite the expected
loss in terms of the training class-conditional density, p(x|y), as

R =

y


L(f (x), y)p′(x, y)dx

=


y


L(f (x), y)p(x|y)p′(y)dx, (2)

where L : R×R→ R is the loss function. Thus, if an estimate of the
test class-priors is known, the expected loss can be calculated from
the training class-conditional densities. The goal of this paper is
to estimate p′(y) from labeled training samples {(xi, yi)}ni=1 drawn

independently from p(x, y) and unlabeled test samples

x′i
n′
i=1

drawn independently from p′(x).1 Given test labels

y′i
n′
i=1 , p′(y)

can be naively estimated by n′y/n
′, where n′y is the number of test

samples in class y. Here, however, we would like to estimate p′(y)
without


y′i
n′
i=1.

1 As we can confirm later, our proposed method does not actually require the
independence assumption on {yi}ni=1 , but is valid for deterministic{yi}ni=1 as long as
xi (i = 1, . . . , n) is drawn independently from p(x|y = yi). However, for being
consistent with other methods, we assume the independence condition here.

2.2. Existing method

We give a brief overview of an existing method for semi-
supervised class-prior estimation (Saerens et al., 2001), which is
based on the expectation–maximization (EM) algorithm (Demp-
ster et al., 1977).

In the algorithm, test class-prior and class-posterior estimatesp′(y) andp′(y|x) are iteratively updated as follows:

1. Obtain an estimate of the training class-posterior probability,p(y|x), from training data {(xi, yi)}ni=1, for example, by kernel
logistic regression (Hastie et al., 2001) or its squared-loss
variant (Sugiyama, 2010).

2. Obtain an estimate of the training class-prior probability,p(y),
from the labeled training data {(xi, yi)}ni=1 as p(y) = ny/n,
where ny is the number of training samples in class y. Set the
initial estimate of the test class-prior probability equal to it:p′0(y) =p(y).

3. Repeat until convergence: t = 1, 2, . . .
(a) Compute a new test class-posterior estimatep′t(y|x) based

on the current test class-prior estimatep′t−1(y) asp′t(y|x) = p′t−1(y)p(y|x)/p(y)
c

y′=1
p′t−1(y′)p(y′|x)/p(y′) . (3)

(b) Compute a new test class-prior estimatep′t(y) based on the
current test class-posterior estimatep′t(y|x) as
p′t(y) = 1

n′

n′
i=1

p′t(y|x′i). (4)

Note that Eq. (3) comes from the Bayes formulae,

p(x|y) =
p(y|x)p(x)

p(y)
and p′(x|y) =

p′(y|x)p′(x)
p′(y)

,

combined with Eq. (1):

p′(y|x) ∝
p′(y)
p(y)

p(y|x).

Eq. (4) comes from empirical marginalization of

p′(y) =


p′(y|x)p′(x)dx.

It was suggested that this procedure may converge to a local
optimal solution (Saerens et al., 2001). In the following section, we
will show that the objective function is actually convex, but that
the method suggested in Saerens et al. (2001) may fail to converge
to the unique optimal value.

3. Reformulation of the EM algorithm as distributionmatching

In this section, we show that the class priors can be estimated
bymatching the test input density to a linear combination of class-
wise training input distributions under the Kullback–Leibler (KL)
divergence (Kullback & Leibler, 1951). We show that the existing
EM method performs this matching via an estimation of the class
posterior. Furthermore, we show that this results in a convex
problem, but that the existing EM method may not obtain the
optimal result.

3.1. Class-prior estimation as distribution matching

Based on the assumption that the class-conditional densities for
training and test data are unchanged (see Eq. (1)), let us model the
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