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h i g h l i g h t s

• A novel nonparallel linear classifier avoids computing the inverses of matrices.
• Two problems of L1-NPSVM can be solved by the dual coordinate descent method.
• Linear TWSVMs and linear L1-SVM are the special cases of linear L1-NPSVM.
• L1-NPSVM has the similar sparseness with standard SVMs.
• Results show the superiority of L1-NPSVM on large-scale problems.

a r t i c l e i n f o

Article history:
Received 4 December 2012
Received in revised form 10 October 2013
Accepted 17 November 2013

Keywords:
Machine learning
Support vector machines
Classification
Nonparallel support vector machine

a b s t r a c t

Twin support vector machines (TWSVMs), as the representative nonparallel hyperplane classifiers, have
shown the effectiveness over standard SVMs from some aspects. However, they still have some serious
defects restricting their further study and real applications: (1) Theyhave to compute and store the inverse
matrices before training, it is intractable for many applications where data appear with a huge number of
instances as well as features; (2) TWSVMs lost the sparseness by using a quadratic loss function making
the proximal hyperplane close enough to the class itself. This paper proposes a Sparse Linear Nonparallel
Support Vector Machine, termed as L1-NPSVM, to deal with large-scale data based on an efficient solver—
dual coordinate descent (DCD) method. Both theoretical analysis and experiments indicate that our
method is not only suitable for large scale problems, but also performs as good as TWSVMs and SVMs.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Support vector machines (SVMs), having their roots in statis-
tical learning theory, are useful for pattern classification (Deng &
Tian, 2009; Tian, Shi, & Liu, 2012; Vapnik, 1996, 1998). For a binary
classification problem with training set

T = {(x1, y1), . . . , (xl, yl)} ∈ (Rn
× Y)l, (1)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, . . . , l, SVM finds the op-
timal separating hyperplane by maximizing the margin between
two parallel support hyperplanes, which involves the minimiza-
tion of a quadratic programming problem (QPP)
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min
w,b,ξ

1
2
(∥w∥2 + b2)+ C

l
i=1

ξi,

s.t. yi((w · xi)+ b) > 1− ξi, i = 1, . . . , l,
ξi > 0, i = 1, . . . , l,

(2)

where ξ = (ξ1, . . . , ξl)
⊤, and C > 0 is a penalty parameter. This

SVM is called L1-SVMsince the L1-loss function ξi = max(1−yi((w·
xi) + b), 0) is adopted. For this primal problem, L1-SVM solves its
Lagrangian dual problem

min
α

1
2
α⊤Qα − e⊤α,

s.t. 0 6 αi 6 C, i = 1, . . . , l,
(3)

where Q ∈ Rl×l, and Qij = yiyj((xi · xj)+1). It is also a QPP. An SVM
usually maps the training set into a high-dimensional space via a
nonlinear functionφ(x), then the kernel functionK(x, x′) is applied
to take instead of the inner product (φ(x)·φ(x′)), such SVM is called
a nonlinear SVM.
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However, in some applications such as document classifica-
tion with the data appearing in a high dimensional feature space,
linear SVM in which the data are not mapped, has similar per-
formances with nonlinear SVM. For linear SVM, many methods
have been proposed in large-scale scenarios (Bottou, 2007; Chang,
Hsieh, & Lin, 2008; Chang & Lin, 2001; Collins, Globerson, Koo, Car-
reras, & Bartlett, 2008; Hsieh, Chang, Lin, Keerthi, & Sundarara-
jan, 2008; Joachims, 2006; Keerthi & DeCoste, 2005; Lin, Weng,
& Keerthi, 2008; Shalev-Shwartz, Singer, & Srebro, 2011; Smola,
Vishwanathan, & Le, 2008; Zhang, 2004).

Recently, some nonparallel hyperplane classifiers have been
proposed (Jayadeva, Khemchandani, & Chandra, 2007; Mangasar-
ian & Wild, 2006). For the twin support vector machine (TWSVM)
(Jayadeva et al., 2007), it seeks two nonparallel proximal hyper-
planes such that each hyperplane is closer to one of the two classes
and is at least one distance from the other. Experimental results
(Jayadeva et al., 2007; Kumar & Gopal, 2008) have shown the effec-
tiveness of TWSVM over the standard SVM on UCI data sets. Fur-
thermore, it is implemented by solving two QPPs smaller than the
problem (3), which increases the TWSVM’s training speed by ap-
proximately fourfold compared with that of SVM. TWSVMs have
been studied extensively (Khemchandani, Jayadeva, & Chandra,
2009; Kumar&Gopal, 2009; Peng, 2010;Qi, Tian, & Shi, 2012, 2013;
Qi, Tian, & Yong, 2012a, 2012b; Shao, Zhang, Wang, & Deng, 2011).

However, existing TWSVMs have two serious defects which
restrict their further studies and real applications: (1) Although
TWSVMs solve two smaller QPPs and can be solved by successive
overrelaxation (SOR) technique (Shao et al., 2011), they have to
compute the inverse of matrices before training, it is in practice
intractable for a large dataset; (2) TWSVMs lost the sparseness by
using a quadratic loss function making the proximal hyperplane
close enough to the class itself.

In this paper, for linear classification issues, we propose a novel
nonparallel linear classifier, termed as linear L1-NPSVM, to solve
very large linear problems. Our L1-NPSVM has incomparable ad-
vantages including: (1) The two problems constructed have the
elegant formulation and can be solved efficiently by the dual coor-
dinate descent (DCD) method, more importantly, we do not need
to compute the inverses of the large matrices any more before
training; (2) It has the valuable sparseness similar with the stan-
dard SVMs; (3) L1-NPSVM degenerates to TWSVMs when the cor-
responding parameters are chosen, and L1-SVM is a special case of
L1-NPSVM.

The paper is organized as follows. Section 2 briefly introduces
the initial TWSVMand its improved edition TBSVM (Twin Bounded
Support Vector Machine) (Shao et al., 2011). Section 3 proposes
the linear L1-NPSVMand its correspondingmulti-classmodel, then
its efficient solver—DCD method is proposed. Section 4 deals with
experimental results and Section 5 contains concluding remarks.

2. Background

In this section, we briefly introduce two variations of the
TWSVM.

2.1. TWSVM

Consider the binary classification problemwith the training set

T = {(x1,+1), . . . , (xp,+1), (xp+1,−1), . . . , (xp+q,−1)}, (4)

where xi ∈ Rn, i = 1, . . . , p + q. For the linear case, TWSVM
(Jayadeva et al., 2007) seeks two nonparallel hyperplanes

(w+ · x)+ b+ = 0 and (w− · x)+ b− = 0 (5)

by solving two QPPs

min
w+,b+,ξ−

1
2

p
i=1

((w+ · xi)+ b+)2 + c1
p+q

j=p+1

ξj,

s.t. (w+ · xj)+ b+ 6 −1+ ξj,
j = p+ 1, . . . , p+ q,
ξj > 0, j = p+ 1, . . . , p+ q,

(6)

and

min
w−,b−,ξ+

1
2

p+q
i=p+1

((w− · xi)+ b−)2 + c2
p

j=1

ξj,

s.t. (w− · xj)+ b− > 1− ξj, j = 1, . . . , p,
ξj > 0, j = 1, . . . , p,

(7)

where ci, i = 1, 2 are the penalty parameters. The solutions
(w+, b+) and (w−, b−) are derived by solving their dual problems

min
α

1
2
α⊤G(H⊤H)−1G⊤α − e⊤2 α,

s.t. 0 6 α 6 c1e2
(8)

and

min
γ

1
2
γ⊤H(G⊤G)−1H⊤γ − e⊤1 γ ,

s.t. 0 6 γ 6 c2e1
(9)

where α = (α1, . . . , αq)
⊤
∈ Rq, γ = (γ1, . . . , γp)

⊤
∈ Rp,H =

[A, e1] ∈ Rp×(n+1),G = [B, e2] ∈ Rq×(n+1), e1 = (1, . . . , 1)⊤ ∈
Rp, e2 = (1, . . . , 1)⊤ ∈ Rq, A = (x1, x2, . . . , xp)⊤ ∈ Rp×n, and
B = (xp+1, xp+2, . . . , xp+q)⊤ ∈ Rq×n.

We can see that TWSVM solves two smaller QPPs, which
claims 4 times faster than the standard SVM (Jayadeva et al.,
2007). Unfortunately, it needs to compute and store the inverse
matrices (H⊤H)−1 and (G⊤G)−1 before training. Since both H⊤H
and (G⊤G)−1 are all of order n + 1, TWSVM fails frequently in
dealing with problems of high dimensions, such as document
classification. Furthermore, in order to deal with the case when
H⊤H or G⊤G is singular and avoid the possible ill conditioning,
the inverse matrices (H⊤H)−1 and (G⊤G)−1 are approximately
replaced by (H⊤H + ϵI)−1 and (G⊤G+ ϵI)−1 respectively, where I
is an identity matrix of appropriate dimensions, ϵ is a positive and
small scalar to keep the structure of data. After solving the dual
problems (8) and (9), the solutions of problems (6) and (7) can be
obtained by

(w⊤
+
, b+)⊤ = −(H⊤H)−1G⊤α, (10)

(w⊤
−
, b−)⊤ = −(G⊤G)−1H⊤γ . (11)

Thus an unknown point x ∈ Rn is predicted to the Class by

Class = arg min
k=−,+

|(wk · x)+ bk|, (12)

where | · | is the vertical distance of point x from the planes
(wk · x)+ bk = 0, k = −,+.

For the nonlinear case, two kernel-generated surfaces instead
of hyperplanes are considered and two other primal problems
different with problems (6) and (7) are constructed, which can
refer to Jayadeva et al. (2007).

2.2. TBSVM

An improved version of TWSVM, termed as TBSVM, is proposed
in Shao et al. (2011) whereas the structural risk is claimed to
be minimized by adding a regularization term with the idea of
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