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This paper addresses the design of a discontinuous finite time convergent learning law for neural networks
with continuous dynamics. The neural network was used here to obtain a non-parametric model for
uncertain systems described by a set of ordinary differential equations. The source of uncertainties was
the presence of some external perturbations and poor knowledge of the nonlinear function describing the
system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the
weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov
function that is lower semi-continuous and differentiable in almost the whole space. A compensator term
was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm.
Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced
in this paper compared to classical schemes with continuous learning methods. The first one dealt with a
benchmark problem used in the paper to explain how the discontinuous learning law works. The second
one used the methane production model to show the benefits in engineering applications of the learning
law proposed in this paper.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Neural networks (NN) have been exploited since thirty years ago
to solve many problems in control theory (Hopfield, 1982), pattern
recognition and some others scientific and technological fields
(Bishop, 2008; Han, Wang, & Qiao, 2013; Noorgard, Ravn, Poulsen,
& Hansen, 2000; Siegelmann & Sontag, 1994). In particular, the
several so-called weight adjustment methods or learning laws
were developed using different methodologies (Haykin, 1994;
Poznyak, Sanchez, & Yu, 2001) such as backpropagation and
momentum just to mention a few (Fukushima, 2013). For the well
known static NN, several schemes based on static optimisation
methods were developed with relative success in different areas
(Xingjian, 2012). Later on, recursive methods helped to introduce
the learning laws for recurrent NN using different least mean
square methods (LMS) (Chen, Cowan, & Grant, 1991). Recently,
differential NN used continuous versions of the same LMS or
adaptive schemes to produce the learning laws (Lewis, Yesildirek,
& Liu, 2001). Nevertheless, most of the previous algorithms just
provided asymptotic convergence for the parameters involved in
the NN description (Mathias & Rech, 2012).

The emergence of new tools for analyzing and designing discon-
tinuous algorithms using Lyapunov functions has opened new
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horizons in different areas (Moreno, 2010; Polyakov & Poznyak,
2011).In particular, a special class of generalised super-twisting al-
gorithm was developed to prove finite time convergence for affine
systems with respect to parameters (Moreno & Guzman, 2011).

In this paper, a new method is presented to produce a novel type
of learning law for a class of continuous NN with access to the
whole state of the uncertain system. The method is based on the
particular application of the so-called generalised super-twisting
algorithm and a new type of Lyapunov-like method to analyse the
convergence of discontinuous algorithms.

The paper is organised as follows: Section 2 defines the approxi-
mation scheme based on NN with continuous dynamics. Section 3
describes the identifier introduced in this paper as well as the
finite-time convergent learning law. Section 4 defines the problem
statement considered here. Section 5 gives the main contribution
regarding the learning law associated with the NN with continu-
ous dynamics. Section 6 describes the numerical results used to
demonstrate the benefits achieved by the method introduced in
this paper. Section 8 concludes the paper with some remarks.

2. The uncertain system and its approximation based on the NN
The class of nonlinear dynamics with the real-valued state consid-

ered in this paper is characterised by the following mathematical
model:
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where x € W™ x := [xq,...,%,]" defines the system state. The
functionu € R™, m < nrepresents an exogenous input or a feed-
back control action that fulfils

lul <ut Ve>0 ut eR™.

Anyway, this signal is assumed to be measurable. In this paper, the
state is also assumed to be measurable. The system (1) is assumed
to be stable; therefore ||x(t)|| < oo Vt > 0. Particularly, the fol-
lowing condition is required to solve the uncertain system and to
obtain the convergence regimen of the identifier based on the con-
tinuous NN.

Condition 1: The function f(x, u) : R""™ — N" is Lipschitz with
respect to its first argument, that is

If x, w) = f o, W < Lllx = yII?

forx,y € 9" and L € R is a positive constant. The source of
uncertainty is not coming only from the low level of knowledge
associated with the mathematical structure of f (x, 1), but also from
the presence of external noises or/and perturbations in the system
dynamics x. This source of perturbation is formally represented by
& € NVt > 0 and fulfils the following inclusion:

lEOI* <&T V>0 &T ent.

The non-parametric mathematical model will be obtained using
a particular type of the least mean square algorithm. Using this
method demands a very important assumption: the nonlinear
function f(x, u) should admit a numerical reconstruction based
on NN. This NN is represented by fo(x, u). This assumption is
paramount to admit the existence of solution for the adaptive mod-
elling problem. A number of possible approximations may be used
here. Among others, the classical least mean square based on basis
functions such as polynomials, sinusoids functions, wavelet func-
tions and NN is a suitable option. No matter what selection is made
to obtain the approximation, the following construction to repre-
sent the uncertain system should be considered:

d
ax(t) = Ax(t) + fo(x(t), u(t)) + n(x(t)) + &(t) (2)

where n(x) : RN" — NR" is used to include the modelling errors
generated by the approximation used in this paper. The matrixA €
R is introduced to represent a feasible linear part of the uncer-
tain system (1). The class of systems analysed in this study and the
assumption on the existence of a solution lead us to consider that
the approximation error fulfils the following sector restriction:

InCOI> < mo + mllxII? (3)

with 79 and 7, are positive scalars. The Stone-Weierstrass theo-
rem claims that if the number of basis functions is tending to in-
finity, the approximation of the uncertain function will be exact.
Nevertheless, it is practically impossible to construct a suitable nu-
merical algorithm with such a characteristic. In this paper, a finite
number of basis functions are used. That is why we consider the
modelling error included in 7 (x) with the characteristics described
in (3). Here one must note that n(x) is not including the control
function u explicitly. However, this is not needed because the con-
trol action can be either bounded or locally linear with respect to
the state, that is

jut < {4
= |l

with u™; I positive scalars. These two conditions are included in

the condition given in (3) and do not fail to fulfil the constrain given

in the last inequality. The first order bound of u with respect to x is

valid because the approximation achieved by the NN is also local.

Usually, the nominal part fy(x, u) is represented by linear combi-
nations of continuous functions I"(x, u) such as it was explained
in different Ref. (Chairez, 2009) regarding the approximation ca-
pability showed by different NN. Therefore, the so-called nominal
section is approximated using the classical linear regression form,
that is

fox, u) .= WI(x,u). (4)

Here I' (x, u) represents the set of activation functions used to re-
construct the uncertain system described in (1). Generally, this
function is defined as

P u) = wiggu

The functions 1 (x) and v, (x) are the basis functions of the same
Hilbert space described above. Additionally, W are parameters
used to adjust the contribution of each basis function required
to obtain the approximation result. In previous results (Poznyak
et al.,, 2001), the approximation parameters have been proposed
as a combination of linear and nonlinear terms. Particularly, in the
NN, one of the widely used activation functions is

Vs r(x) == tanh(c,Tx) s=1,2;r=1,...,N; ¢, e ®".

Here tanh(-) is a real valued hyperbolic tangent that is continuous
and bounded, that is

1950 — Y ®I* < Ly, llx — X||?
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x.xeR" Ly, Ly € Rt

3. The identifier based on the NN with continuous dynamics

The identifier based on the NN is proposed to follow the classical
strategy used within the adaptive parameter identification frame-
work. This construction used a structural copy of the approxima-
tion for an uncertain system based on the NN defined in (2). In
particular, this identifier uses what is called a series structure be-
cause x is used in the differential equation for the identifier trajec-
tories, namely X. Therefore, the identifier based on the NN has the
following structure (Lewis et al., 2001):

d N
Eﬁ(t) = Ax(t) — K1@1(A(1) + WO I (x(t), u(t)) +rx(t)) (5)

d .

L VO = -2 (AO) T (X(©), u(D).

In this expression, W(t) is the estimation for the matrix W. The
couple of matrices K; € R™" and K, € R™" are gains that
must be selected to achieve an accurate simultaneous estimation of
both the state vector and parameters. The functions @, and &, are
defined following the structure proposed in Cruz-Zavala, Moreno,
and Fridman (2011). Therefore, these function are

®1(4) = pidiag(|A[V*)S(A) + po A

2 : 1/2 2 (6)
D,(A) == piS(A) + 1.5 pupdiag(JA|/9)S(A) + pyA.

Here 1, € M™" and u, € R™" are additional adjustable matri-
ces that must be selected to ensure the convergence of the iden-
tification error defined by A := X — x and the parameter error
definedby W = W — W € %2"*". The function |A(t)|/2 € R"
stands for the vector formed with the absolute values of the com-
ponents of A, that is

.
|AIY2 = [12401%, 14512, L 1A 2]
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