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a b s t r a c t

Statistical inference using machine learning techniques may be difficult with small datasets because of
abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training
sample that they should be, with respect to their theoretical probability, and include e.g. outliers.
Estimates of parameters tend to be biased towards models which support such data. This paper
proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation
is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which
compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any
statistical inference method which can be formulated as a likelihood maximisation. Experiments show
that PPRs can be easily used to tackle regression, classification and projection: models are freed from the
influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained
for each observation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In statistical inference andmachine learning, the goal is often to
learn a model from observed data in order to predict a given quan-
tity. In a training sample x = (x1, . . . , xn), the n observations xi ∈

X are typically assumed to be i.i.d. drawn from the distribution
p(x) of the random variable X, whereas themodel belongs to a cer-
tain parametric family with parameters θ ∈ Θ . In particular, many
machine learning techniques can be cast as maximum likelihood
methods. In this probabilistic framework, learning of themodel pa-
rameters can be achieved by maximising the data log-likelihood

L (θ; x) =

n
i=1

log p (xi|θ) (1)

where p(xi|θ) is the probability of the observation xi under parame-
ters θ. In order to penalise too complexmodels which could overfit
training data, regularisation methods or Bayesian priors can also
be used as a complement.

A common problem when the training sample size n is small
is that some data may be much more frequent in the training
sample that they should be, with respect to their theoretical
probability of occurrence p(xi). These abnormally frequent data
(AFDs) may pose a threat to statistical inference when maximum
likelihood or similar methods are used. Indeed, maximising the
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log-likelihood corresponds to minimising the Kullback–Leibler
divergence between the empirical distribution of observed data
and the considered parametric distribution (Barber, 2012), in the
hope that the empirical distribution is close to the real (unknown)
distribution. Since the empirical probability of AFDs is much larger
than their real probability, the parameter estimation is affected
and biased towards parameter values which support the AFDs.
For example, AFDs are well known to hurt Gaussian distribution
fitting. In this paper, a method is proposed to deal with AFDs by
considering that it is better to fit for instance 95% of the data well
than to fit 100% of the data incorrectly. Notice that outliers are a
subclass of AFDs. Indeed, outliers are observations which should
theoretically never appear in a training sample, with respect to
the parametric model being used (which reflect hypotheses being
made about the data generating process). This includes e.g. data
which are very far from the mean in Gaussian distribution fitting
or datawith incorrect labels in classification. Outliers are known to
noticeably affect statistical inference. This paper addresses AFDs in
general; experiments focus on the specific subclass of outliers.

In many applications, regularisation or Bayesian methods are
used to deal with data which are not correctly described by
the model, by penalising overly complex models and avoiding
overfitting. However, thesemethods are only suited for the control
of model complexity, not for the control of AFD effects. These
two problems should be dealt with different methods. Hence,
many approaches have been proposed to perform outlier detection
(Barnett & Lewis, 1994; Beckman & Cook, 1983; Daszykowski,
Kaczmarek, Heyden, & Walczak, 2007; Hawkins, 1980; Hodge
& Austin, 2004) and anomaly detection (Chandola, Banerjee, &
Kumar, 2009). It is well-known that many statistical inference
methods are quite sensitive to outliers, like e.g. linear regression
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(Beckman & Cook, 1983; Cook, 1979; Hadi & Simonoff, 1993),
logistic regression (Rousseeuw & Christmann, 2003) or principal
component analysis (Archambeau, Delannay, & Verleysen, 2006;
Daszykowski et al., 2007; Xu & Yuille, 1995). The approach
proposed in this paper relies in part on weighted log-likelihood
maximisation, which is often used in the literature to reduce the
impact of some of the data (Hu & Zidek, 2002). For example,
there exist such algorithms for kernel ridge regression (Jiyan,
Guan, & Qun, 2011; Liu, Li, Xu, & Shi, 2011; Suykens, De
Brabanter, Lukas, & Vandewalle, 2002; Wen, Hao, & Yang, 2010),
logistic regression (Rousseeuw & Christmann, 2003) and principal
component analysis (Fan, Liu, & Xu, 2011; Huber, 1981). The
main problem with these approaches is that the weights are
usually obtained through heuristics. Other methods for linear
regression include e.g. M-estimators (Huber, 1964), the trimmed
likelihood approach (Hadi & Luceo, 1997) and least trimmed
squares (Rousseeuw, 1984; Ruppert & Carroll, 1980). One of the
main advantages of the method proposed in this paper is that the
observation weights are automatically computed.

AFDs have been widely studied in the classification literature,
where labelling errors adversely impact the performances of
induced classifiers (Zhu &Wu, 2004). For example, the information
gain can be used to detect such AFDs (Guyon, Matic, & Vapnik,
1996). Similarly to the proposed approach, it has also been
proposed in the classification literature to limit the influence
of each observation during inference, in order to prevent the
model parameters to be biased by only a few incorrectly labelled
instances. However, each method relies on a different way to limit
the contribution of observations which is specific to a givenmodel.
For example, instances with large dual weights can be identified as
mislabelled for support vector machines (Ganapathiraju, Picone, &
State, 2000), on-line learning of perceptrons can be robustified by
preventing mislabelled instances to trigger updates too frequently
(Kowalczyk, Smola, & Williamson, 2001) and boosting algorithms
can impose an upper bound on instance weights (Domingo &
Watanabe, 2000). It has also been proposed to associate each
observation with a misclassification indicator variable which
follows a Bernoulli model (Rekaya, Weigel, & Gianola, 2001), what
is closer to the contribution of this paper; the indicators can
be used to identify mislabelled observations (Hernandez-Lobato,
Hernandez-Lobato, & Dupont, 2011; Zhang, Rekaya, & Bertrand,
2006). The approach proposed in this paper has the advantage of
being simple to adapt to specific statistical models and not limited
to classification problems.

This paper introduces pointwise probability reinforcements
(PPRs), which allow the learner to deal with AFDs in a specific way.
The probability of each observation is reinforced by a PPR and a
regularisation allows one to control the amount of reinforcement
which is awarded to compensate for AFDs. The proposed method
is very generic, for it can be applied to any statistical inference
method which is the solution of a maximum likelihood problem.
Moreover, classical regularisation methods can still be used to
further control the model complexity. Eventually, abnormality
degrees are obtained, which can be e.g. used to manually screen
outliers. In the literature, many outlier detection techniques
exist; see e.g. Barnett and Lewis (1994), Beckman and Cook
(1983), Hawkins (1980) and Hodge and Austin (2004) for a
survey. However, the primary goal of the method proposed
in this paper is not only to detect the outliers: the aim is
rather to make maximum likelihood estimates less sensitive to
observationswhich are abnormally frequent (including outliers) in
the training sample, with respect to their theoretical probability.
Consequently, common statistical inference methods like linear
regression, kernel ridge regression (a.k.a. least squares support
vector machines), logistic regression and principal component
analysis are shown to be easily robustified using the proposed
approach.

This paper is organised as follows. Section 2 introduces PPRs
and motivates their formulation. Section 3 proposes a generic al-
gorithm to compute PPRs and to use them during the statistical
inference of model parameters. The proposed algorithm is adapted
to several supervised and unsupervised problems in Section 4. It
is shown that PPRs allow one to efficiently deal with outliers and
Section 5 discusses how to choose the amount of reinforcement to
use. The resultingmethodology is assessed experimentally for ker-
nel ridge regression in Section 6. Eventually, Section 7 concludes
the paper.

2. Pointwise probability reinforcements: definition and con-
cepts

As explained in Section 1, the problem with AFDs is that their
empirical probability is much larger than their actual probability.
As a consequence, the parameters of models inferred from data
with AFDs are biased towards values which overestimate the
probability of AFDs. For small training samples, this can have
an important impact on the resulting model. For example, in
linear regression, outliers can significantly bias the slope and the
intercept of an estimated model.

In this paper, it is proposed to deal with AFDs by introducing
pointwise probability reinforcements (PPRs) ri ∈ ℜ

+. The log-
likelihood becomes

L (θ; x, r) =

n
i=1

log [p (xi|θ)+ ri] (2)

where each observation xi is given a PPR ri which acts as a re-
inforcement to the probability p (xi|θ), resulting in a reinforced
probability. The above log-likelihood is called here the reinforced
log-likelihood. The PPRs should remain small (or even zero), except
for AFDs forwhich theywill compensate for the difference between
their large empirical probability and their small probability under
a model with parameters θ. The spirit of the proposed method is
similar to the one of M-estimators (Huber, 1964) and related ap-
proaches (Chen & Jain, 1994; Chuang, Su, & Hsiao, 2000; Liano,
1996). In regression, instead of minimising the sum of the squared
residuals, the M-estimator approach consists in minimising an-
other function of the residuals which is less sensitive to extreme
residuals. Similarly, PPRs allow one to make maximum likelihood
less sensitive to extremely small probabilities. However, there ex-
ist many different M-estimators and it is not necessarily easy to
choose among them. Moreover, their use is limited to regression.
On the contrary, PPRs can be used to robustifymaximum likelihood
methods for e.g. regression, classification or projection, as shown
in Section 4.Moreover, Section 3 shows that PPRs can be easily con-
trolled using regularisation, for example by introducing a notion of
sparsity.

Eq. (2) can bemotivated by consideringmethodswhich are used
in the literature to deal with outliers. In classification, data consists
of pairs (xi, yi) ∈ X × Y where xi is a vector of observed feature
values and yi is the observed label. Label noise occurs when a few
data have incorrect labels (e.g. false positives inmedical diagnosis).
In such a case, Lawrence and Schölkopf (2001) introduce a labelling
error probability πe which can be used to write

L (θ, πe; x, y) =

n
i=1

log [(1 − πe) p (yi|xi, θ)

+πe (1 − p (yi|xi, θ))]

=

n
i=1

log

p (yi|xi, θ)+

πe

1 − 2πe


+ n log [1 − 2πe] . (3)
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