
Neural Networks 50 (2014) 142–153

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

A linear recurrent kernel online learning algorithm with
sparse updates
Haijin Fan ∗, Qing Song
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

a r t i c l e i n f o

Article history:
Received 11 September 2012
Received in revised form 16 August 2013
Accepted 13 November 2013

Keywords:
Kernel methods
Linear recurrent
Hybrid recurrent training
Weight convergence

a b s t r a c t

In this paper, we propose a recurrent kernel algorithmwith selectively sparse updates for online learning.
The algorithm introduces a linear recurrent term in the estimation of the current output. This makes
the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To
ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid
recurrent training is proposed to switch on or off learning the recurrent information according to the
magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive
learning rate which can provide guaranteed system weight convergence at each training iteration. The
learning rate is set as zero when the training violates the derived convergence conditions, which makes
the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented
and experimental results show the good performance of the proposed algorithm in terms of convergence
speed and estimation accuracy.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, a lot of kernel-based methods have been
proposed for practical applications, including time series predic-
tion, channel equalization, pattern classification, and dimension-
ality reduction. The basic idea behind kernel methods is that the
Mercer kernels are applied to map the original input feature into
a higher-dimensional or even infinite-dimensional feature space.
In such a feature transformation, linear solutions could be found
in the higher-dimensional feature space even if the original fea-
ture is highly nonlinear (Schōlkopf, Herbrich, & Smola, 2001). The
well-developed kernel methods include support vector machines
(SVMs) (Burges, 1998; Sebald & Bucklew, 2000; S̆ Raudys, 2000),
kernel embedding methods (Guo, Gao, & Kwan, 2008; Memisevic,
Sigal, & Fleet, 2012), and different kinds of kernel leastmean square
(KLMS) algorithms (Campbell, 2002; Rasmussen, 2004). However,
the main problem of kernel methods is the growing network size
with the increasing number of training samples. The complexity
of their structures makes most of the current kernel methods only
suitable for off-line learning or batch learning.

In classical kernel methods, the kernel function number
becomes very large as the amount of training data continuously
increases. The large number of kernel functions makes the
algorithms not only be in danger of overfitting but also to have a

∗ Corresponding author. Tel.: +65 85525016.
E-mail addresses: hfan1@e.ntu.edu.sg, fanhiking@gmail.com (H. Fan).

high computational complexity growing superlinearly with the
number of kernel functions. To prevent the network size being
too large, a compact dictionary should be chosen as the kernel
function centers. Recently, different sparsification methods have
been proposed to address this problem. They aimed to select a
compact dictionary with finite size using different criteria (Engel,
Mannor, & Meir, 2004; Kivinen, Smola, & Williamson, 2004; Liu,
Park, & Príncipe, 2009; Richard, Bermudez, &Honeine, 2009). Based
on these sparsification methods, many kernel online learning
algorithms were proposed. These algorithms include the kernel
least mean square (KLMS) algorithm (Chen, Zhao, Zhu, & Príncipe,
2012; Liu, Pokharel, & Príncipe, 2008), the kernel normalized least
mean square (KNLMS) algorithm (Richard et al., 2009), the kernel
affine projection (KAP) algorithm (Liu & Príncipe, 2008; Slavakis
& Theodoridis, 2008), and the kernel recursive least square (KRLS)
algorithm (Engel et al., 2004). They generalized kinds of linear least
square algorithms and found their solutions in the reproducing
kernel Hilbert spaces (RKHS). In online learning settings, at each
training iteration, only one training sample is applied for the
updating of the algorithm. In this fashion, the above-mentioned
online kernel algorithms used only the current training sample to
update themselves and their outputs only depended on the current
feature inputs, without any relations to the previous outputs.
In this sense, they are a kind of feedforward networks. On the
other hand, the recurrent networks have been widely examined
for their excellent efficiency and ability in nonlinear modeling
as in recurrent neural networks (RNNs) (Baltersee & Chambers,
1998; Song, Wu, & Soh, 2008; Sperduti, 1997), recurrent SVMs

0893-6080/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.neunet.2013.11.011

http://dx.doi.org/10.1016/j.neunet.2013.11.011
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2013.11.011&domain=pdf
mailto:hfan1@e.ntu.edu.sg
mailto:fanhiking@gmail.com
http://dx.doi.org/10.1016/j.neunet.2013.11.011


H. Fan, Q. Song / Neural Networks 50 (2014) 142–153 143

(Qu, Oussar, Dreyfus, &Xu, 2009; Suykens&Vandewalle, 2000; Xie,
2009), and recurrent radial basis function (RBF) networks (Billings,
Wei, & Balikhin, 2007; Mimura, Hamada, & Furukawa, 2002). In
recurrent networks, the current output depends not only on the
current feature inputs but also on the previous outputs. In the
training of recurrent networks, the recurrent part provides the past
gradient information in the form of a Jacobian matrix in many
recurrent neural networks (Pearlmutter, 1995; Song, 2011; Song
et al., 2008). The reuse of the past information is shown to be able
to accelerate the convergence speed in many nonlinear adaptive
networks (Diniz & Werner, 2003; Qiu et al., 2006; Soni, Gallivan,
& Jenkins, 2004). However, the Jacobian matrix is in a nonlinear
form of the previous gradient information, and the evaluation of it
is very complex.

This paper presents a novel linear recurrent kernel online
learning algorithm. A linear feedback of the one-step previous
output is incorporated into the algorithm in a special way. This
is very significant for the online training since it provides the
past gradient information in a linear form. In this way, the
updating gradient information can be evaluated recursively with
a very low computational complexity. To guarantee the weight
convergence, in our training method, three adaptive parameters
are automatically determined to adjust the training process. A
hybrid learning rate is chosen to determine the proper learning of
the recurrent gradient information to accelerate the convergence
rate. An adaptive learning rate and a normalization factor are used
to guarantee the weight convergence at each training iteration
according to the derived convergence conditions. The adaptive
learning rate features the sparseness of the updating, where only
the training iterations without violating the convergence criteria
are active. Similar sparse updates and adaptive learning have
already applied in many adaptive systems (Bhotto & Antoniou,
2012; Nagaraj, Gollamudi, Kapoor, & Huang, 1999; Ozay, Sznaier,
Lagoa, & Camps, 2012). The main contributions of this study are
that, on the one hand, it introduces a linear recurrent version
of kernel online learning algorithm where the reuse of past
information is able to accelerate the convergence speed; on the
other hand, it generalizes the adaptive training methods in the
RKHS in a novel way which can ensure the weight convergence
at each training step in online learning. To curb the increasing
growth of the kernel function number, we use a coherence-based
criterion for sparsification and derive a linear recurrent kernel
online learning (LRKOL) algorithm for nonlinear signal processing
and system modeling.

The organization of this paper is as follows. In Section 2, we in-
troduce some fundamental ideas of kernel methods. In Section 3,
the proposed linear recurrent kernel online learning algorithm is
presented. The detailed training method is described followed by
the theoretical analysis of the weight convergence. In Section 5,
experimental and simulation results of several examples are pre-
sented, and finally a conclusion is given in Section 6.

2. Fundamentals of kernel methods

For many nonlinear signal processing problems, it is difficult to
find linearmodels in their original low-dimensional feature spaces.
However, by using a nonlinear mapping function, which maps
the low-dimensional feature spaces into the higher-dimensional
RKHS, linear models can be found. Suppose that H is a Hilbert
space and that ⟨·, ·⟩H is the inner product in the Hilbert space.
A mapping function ϕ(·) will transfer the input feature space U
to a higher-dimensional feature space F . The evaluation of the
function ϕ(u(i)) on the point u(j) becomes (Aronszajn, 1951)

(ϕ(u(i)))(u(j)) = ⟨ϕ(u(i)), ϕ(u(j))⟩H = k(u(i), u(j)), (1)

where k(·, ·) is a positive definite and symmetric kernel function.
The inner product of two feature vectors in the higher-dimensional

feature space can be easily computed by (1) without knowing
the exact function of ϕ(·), which is usually called the kernel
trick. The commonly used kernels include the Gaussian kernel
κ(u(i), u(j)) = exp(−∥u(i) − u(j)∥2/2σ 2), the Laplacian kernel
κ(u(i), u(j)) = exp(−∥u(i) − u(j)∥/σ) with σ being the kernel
width, and the polynomial kernel κ(u(i), u(j)) = (η +u(i)⊤u(j))q,
with η ≥ 0 and q ∈ N.

2.1. Kernel methods

The Mercer kernel is widely used to compute the inner prod-
uct of high-dimensional features in the RKHS in kernel methods.
Let κ(·, ·) : U × U → R denote the kernel mapping in the
corresponding RKHS H . Given the feature input-desired output
sequence {u(j), d(j)}tj=1, the problem is to find a function f (·) to
reconstruct the corresponding output f (u(t)) = ⟨f (·), k(·, u(t))⟩H .
By virtue of the representer theorem (Aronszajn, 1951), the func-
tion f (·) can be expressed as linear form in the RKHS

f (·) = ωT (t)ϕ(·), (2)

where ω(t) is the weight coefficient, and it can be expressed as a
linear combination of the feature vectors in the RKHS obtained till
the tth training iteration,

ω(t) =

t
j=1

αjϕ(u(j)). (3)

Using the kernel trick, we have

f (·) =

t
j=1

αjκ(·, u(j)), (4)

where κ(·, u(j)) is a kernel function with its center being the
input feature vector u(j), and αj is the kernel weight. As a re-
sult, the function can be estimated implicitly by the feature input
vectors with a Mercer kernel function. If sparsification methods
(Engel et al., 2004; Kivinen et al., 2004; Liu et al., 2009; Richard
et al., 2009) are applied to reduce the kernel function number, and
supposing that a sparse dictionary D(t) = {u(D1), . . . , u(Dm)}
with m members is obtained, the estimated function becomes

f (·) =

m
j=1

αjκ(·, u(Dj)), (5)

where the number of kernel functions is limited to the size of the
dictionary.

3. Linear recurrent kernel online learning algorithm

Different from the feedforward kernel algorithm, the output of
the proposed recurrent kernel algorithm depends not only on the
current feature input but also on the one-step previous output.
The explicit network structure is shown in Fig. 1. Consider the
current input u(t); the estimated output y(t) is determined by
the feature input together with a linear feedback of the previous
output y(t − 1), which can be formulated as

y(t) =

m
i=1

(κ(u(t), u(Di)) + λiy(t − 1))αi

= [K (t) + y(t − 1)λ(t)]Tα(t), (6)

where K (t) ∈ Rm×1 is the kernel evaluation vector of the input
with the existing dictionary D(t) = {u(D1), . . . , u(Dm)}, and it is
defined as

K (t) = [κ(u(t), u(D1)), . . . , κ(u(t), u(Dm))]T . (7)



Download English Version:

https://daneshyari.com/en/article/404023

Download Persian Version:

https://daneshyari.com/article/404023

Daneshyari.com

https://daneshyari.com/en/article/404023
https://daneshyari.com/article/404023
https://daneshyari.com

