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Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has
been usual to suppose that each single model generates a residual or prediction error like a white
noise. However, mostly because of disturbances not captured by each model, it is yet possible that such
supposition is violated. The present paper introduces a two-step method for correcting and combining
forecasting models. Firstly, the stochastic process underlying the bias of each predictive model is built
according to a recursive ARIMA algorithm in order to achieve a white noise behavior. At each iteration
of the algorithm the best ARIMA adjustment is determined according to a given information criterion
(e.g. Akaike). Then, in the light of the corrected predictions, it is considered a maximum likelihood
combined estimator. Applications involving single ARIMA and artificial neural networks models for Dow
Jones Industrial Average Index, S&P500 Index, Google Stock Value, and Nasdaq Index series illustrate the

Keywords:

Time series forecasters

Unbiased forecasters

Maximum likelihood estimation

Linear combination of forecasts

Artificial neural networks hybrid systems

usefulness of the proposed framework.
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1. Introduction

All phenomena sampled over time generate a time series.
Due to the time ordering and usual stochastic nature underlying
these series, their statistical modeling has been paramount to
analyzing and forecasting the respective phenomena (Box, Jenkins,
& Reinsel, 1994; Kantz & Schreiber, 2003). The well-known linear
autoregressive integrated moving average (ARIMA) (Box et al.,
1994), non-linear autoregressive conditionally heteroscedastic
(ARCH) (Engle, 1982), and generalized ARCH (GARCH) (Bollerslev,
1986) models are examples of statistical formalisms for time series
analysis and forecasting.

Regarding non-linear models, approaches based on artificial
neural networks (ANN) for time series forecasting have pro-
duced convincing results in recent decades (Ferreira, Vasconce-
los, & Adeodato, 2008; Gerald & Dimitri, 2007; Hippert & Taylor,
2010; Morabito & Versaci, 2003; Xiao Niu, feng Shi, & Wu, 2012;
Zhang & Eddy Patuwo, 1998, 2001). The main challenge of these
ANN models has been to adjust their attributes, like connection
weights, architecture (e.g. structure, transfer function) and learn-
ing algorithms. In this way, it has been usual to spend consid-
erable computational resources in order to select the best ANN
model (Amjady & Keynia, 2010; Ferreira et al., 2008; Gerald & Dim-
itri, 2007; Hippert & Taylor, 2010; Morabito & Versaci, 2003; Xiao
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Niu et al., 2012). These strategies commonly use some evolution-
ary computation technique based on population dynamics - for
example, genetic algorithms (Michalewicz, 1996), evolution strat-
egy (Beyer & Schwefel, 2002), swarm intelligence techniques, like
ant colony optimization (Dorigo, Manirezzo, & Colomi, 1996) and
particle swarm optimization (de M. Neto, Petry, Rodrigues, & Fer-
reira, 2009), and so on (Morabito & Versaci, 2003; Xiao Niu et al.,
2012).

Anyway, regardless of dealing with linear (e.g. ARIMA) or non-
linear patterns (e.g. ANN), much of the time series literature
implicitly assume that there is a true model for the series and that
this model is known before it is fitted to the data (Chatfield, 2000),
only resting to infer its parameters. In other terms, this modeling
perspective only deals with parameters uncertainties and neglects
the intrinsic structural or model uncertainty. Corroborating with
the fact that it is very difficult to find a unique and true model for a
given time series, some authors such as Neuman (2003) also have
pointed out that adopting just one model may lead to statistical
bias and underestimation of uncertainty. With those arguments in
mind, model uncertainty seems to be present in any time series
analysis.

Currently, model uncertainty research has been in the vanguard
of time series analysis. For the sake of illustration, Taskaya-
Temizel and Casey (2005) have studied the performance of
autoregressive neural network hybrids, warning for the danger
of underestimating the relationship between the models’ linear
and non-linear components. In turn, some authors (Amendola &
Storti, 2008; Dell’Aquila & Ronchetti, 2006; Lean, Shouyang, & L,
2005; Lux & Morales-Arias, 2010) have rejected the hypothesis that
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a unique and true model is achievable. Instead, these researchers
have been challenged by the attempt of combining diverse models
in order to present aggregate forecasts. In the specific case of
ANN models, there are basically two methodologies: mixtures of
experts methods (Hansen, 1999) and ensemble methods (Hansen,
1999; Shi, Xu, & Liu, 1999). The former consists of a system that
is composed of several single networks, where each one learns to
handle a subset of the complete data set of training. This procedure
can be viewed as a modular version of an multilayer ANN. The latter
works on multiple predictors and uses (non-)linear combinations
of them, resulting in an aggregate forecaster.

Actually, whether one considers ANN or other modeling
approaches, model uncertainty literature reviews (Clemen, 1989;
Jeong, 2009; Wallis, 2011) have emphasized linear combination
of forecasters (LCF). This class of estimators is among the most
effective and simplest ways to deal with model uncertainty. In LCF
the combined estimator is given by a weighted average of single
models, where the weight of each model is usually a function of
the variance of its residuals and its correlation with other models.
This is the case with minimum variance (MV) combined estimators
- one of the most widely known LCF approaches (Menezes, Bunn,
& Taylor, 2000). Specifically, the MV LCF are commonly used by
both the statistics and the neural network communities (Hashem,
1997).

Generally, LCFs are based on the assumption that the residuals
of each single model are caused by random shocks, characterizing
white noises, or unpredictable, independent and unbiased terms.
However, mostly because of the heterogeneity of the phenomenon
under study or even due to disturbances not captured by the
models, it is yet possible that such suppositions are violated when
applying ARIMA and ANN models (de M. Neto, Lima, & Ferreira,
2010; Sitte & Sitte, 2002), for instance. In fact, many ANN models
are relatively ineffective in making estimates for state spaces they
have not been trained on (Chen & Leung, 2004), eventually leading
to biased noises.

The present paper illustrates cases involving ARIMA and
ANN models where the white noise supposition is violated and
suggests a model uncertainty approach to overcome the problem.
Specifically, a two-step LCF model is presented. Firstly, the time
trend of the residuals of each single model is fitted via a recursive
ARIMA-based algorithm. At each iteration of the algorithm an
ARIMA model is adjusted to the current remaining residuals. This
algorithm is repeated until a white noise residual is achieved,
i.e. until an ARIMA(O, 0, 0) is reached. Only after this step, a LCF
model is introduced in order to combine the resulting unbiased
forecasters.

The paper is organized as follows. The next section presents
the proposed framework and suggests an algorithm to envelop the
main ideas of the paper. Section 3 illustrates the usefulness of the
proposed approach by means of four case studies involving ARIMA
and ANN models and financial time series, namely the Dow Jones
Industrial Average Index, S&P500 Index, Google Stock Value, and
Nasdaq Index series. Section 4 brings some concluding remarks.

2. The proposed maximum likelihood (ML) approach

The proposed framework can be divided into three parts (see
Fig. 1). In the first part, namely the Classical Approach, the residuals
of each model are supposed to be white noises. This step reflects
the elaboration of the single forecasters and it is not the object
of study of the present paper. Anyway, one important step to be
highlighted in the elaboration of the single models is the correct
establishment of the relevant lags, i.e. the past points of the series
that should be considered to perform predictions with reasonable
accuracy. Thus, the single forecasts must be seen as an input for the
proposed approach and specific details regarding their functional

form are neglected. Therefore, the single models are considered
black-box like models and their parameters uncertainties are not
considered.

In turn, the Correction Procedure is dedicated to model the
residuals of each forecaster when exposed to application. The
purpose of this step is to capture any tendency of the phenomena
of interest not enveloped by the original forecasting models. Then,
if necessary, the prediction of the error series is used to correct the
forecaster estimates for the future values of the series (Forecastj, in
Fig. 1).

Finally, in the Aggregation Procedure the forecasts of the
corrected models are combined via ML estimation. Specifically,
the adopted LCF penalizes forecasters which involve greater error
variance and correlations than the remaining forecasters. Thus,
in the adopted aggregation method, the weight of each model is
proportional to its statistical efficiency and independence with
regard to the remaining predictors. This step is based on the
supposition that the input forecasters are unbiased, reinforcing the
importance of the correction phase. The output of this process is
the combination of the corrected single models forecasts (Forecast®
in Fig. 1).

Such a framework is formally presented as follows. Following
general literature practice, random variables and constants will
be represented by upper and lower case letters respectively.
Subindexes: t, i, and j to correspond time, the forecaster, and the
recursive-ARIMA model, in this order. Respectively, u, U, and E
are the unknown to be predicted, an estimator (forecaster) for
the unknown u, and its respective random error (bias). In order
to deal with the model uncertainty problem in the cases where
the estimates are performed by experts, Mosleh and Apostolakis
(1986) consider two error structures:

-~

E=U—-u (1)
namely additive error model and
U
E=— (2)
u

so-called multiplicative error model.

For modeling these two error structures, some authors
(Droguett & Mosleh, 2008; Shirazi & Mosleh, 2009) suggest respec-
tively normal and lognormal distributions. Specifically, Droguett
and Mosleh (2008) use independent and identically distributed
(iid) additive (or multiplicative) errors for handling predictions
performed by mathematical models. Thus, regarding a time se-
ries context, the set of errors resulting from the predictor,
E = (Ei,E3, ... ,E, ... ,Ey), is seen as a sample of n iid nor-
mal (or lognormal) distributed random variables reflecting the
model performance, in such a way that the closer the addi-
tive (multiplicative) E; to zero (one) the better the forecaster is.
Actually, this reasoning is in accordance with the basic frame-
work of time series analysis. The assumption of iid normal
(for additive) or lognormal (for multiplicative) distributed er-
rors plays the role in the usual formalisms, such as ARIMA
models. R

One can see that for the additive error, Uy = u; + E;, and for
the multiplicative error, Uy = u; - E;. Basically, the idea of the
frameworks originated from Mosleh and Apostolakis (1986) is to
measure the error model in the light of observed values of E, here
related by the performance data set e = (ej, ez, ...,€,...,¢€n)
(where a lowercase letter denotes the observed value of the ran-
dom variable denoted by the same letter capitalized), and then to
use the resulting error probability distribution when performing
new predictions, by means of the Bayes theorem. Among the argu-
ments for studying each model bias, Droguett and Mosleh (2008)
emphasize the practical possibility of adopting models only par-
tially applicable to the problem at hand. Anyway, mostly because
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