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The holographic conceptual approach to cognitive processes in the human brain suggests that, in some
parts of the brain, each part of the memory (a neuron or a group of neurons) contains some information

In Dolev and Frenkel (2010, 2012) we demonstrated how to encode data in a holographic manner
using the Walsh-Hadamard transform. The encoding is performed on randomized information, that is
then represented by a set of Walsh-Hadamard coefficients. These coefficients turn out to have holographic
properties. Namely, any portion of the set of coefficients defines a “blurry image” of the original data.

In this work, we describe a built-in error correction technique—enlarging the width of the matrix

used in the Walsh-Hadamard transform to produce a rectangular Hadamard matrix. By adding this
redundancy, the data can bear more errors, resulting in a system that is not affected by missing coefficients
up to a certain threshold. Above this threshold, the loss of data is reflected by getting a “blurry image”
rather than a concentrated damage. We provide a heuristic analysis of the ability of the technique to
correct errors, as well as an example of an image saved using the system. Finally, we give an example of
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a simple implementation of our approach using neural networks as a proof of concept.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Holographic brain

The Holographic Brain Theory, developed by Pribram (1971,
1991), suggests that the brain holds memories in a holographic
manner. In a hologram, the data is not localized, but rather
distributed. Each part of the holographic recording film contains
some information about the entire image. Thus, a reconstruction
of the image by a small piece of the holographic recording film
results in a noisy version of the entire original image (Gabor, 1972),
as opposed to a classical photograph, where a small piece of the
film yields a sharp image of the specific piece, but no information
about the rest of the picture.
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1.2. Walsh-Hadamard transform

A Hadamard matrix is an n x n orthogonal matrix with
entries in {—1, 1}. Hadamard matrices are widely used for
many applications, e.g., communication systems, signal and image
processing, digital logic, and fault-tolerant system design (Agaian,
Sarukhanayan, Egiazarian, & Astola, 2011). The Walsh-Hadamard
matrix is a specific Hadamard matrix (Agaian et al., 2011) (defined
only for sizes n of the form n = 2¥). The Walsh-Hadamard
transform (multiplication by the Walsh-Hadamard matrix) is a
holographic transform in the sense that each coefficient (entry in
the output vector) is a result of a simple computation involving
all the entries of the original input vector. Indeed, since each
entry in the matrix is either 1 or —1, multiplication by the
matrix is obtained by additions and subtractions. Thus, each
coefficient contains some information about all the entries of
the input vector. Moreover, each entry has the same weighted
effect on each coefficient. There are other holographic data
representations, where any portion of the data contains some
information on the entire data (Bruckstein, Holt, & Netravali,
1998, 2001; Dovgard, 2004; Jayalakshmi & Ananthashayana, 2007).
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However, it seems that, due to the fact that the Walsh-Hadamard
transform can be calculated by additions and subtractions only,
it can be very easily implemented by the simplest neural model,
whereas other holographic transforms require more complicated
neurons or a more complicated network of simple neurons. For
example, Velik (2008) used linear threshold neurons to calculate
the discrete Fourier transform. Moreover, these transforms are
not completely holographic in the sense that there is a major
difference between the images obtained by removing different
parts of the transform data. For example, in the Fourier transform,
removing the high frequencies from the transformed data results in
a significantly different image than removing the low frequencies.
In our use of the Walsh-Hadamard transform and randomization,
all parts of the transformed data will have almost the same effect.
There are also holographic memory systems that save data in
a holographic manner without prior transformation such as the
Hopfield network (Hopfield, 1982) and Bidirectional Associative
Memory networks (Kosko, 1988). However, these systems are not
completely holographic. For example, removing several edges that
are connected to the same node in the Hopfield network will result
in losing information in that specific node (as well as some other
nodes in some cases), which is not in line with the holographic
desired property. Fig. 1 provides an example of the action of the
Walsh-Hadamard transform on a {—1, 1} vector.

The output vector is the result of multiplying the input vector
by the Hadamard matrix. The input vector can be reconstructed
from the output vector by multiplying the output vector by the
transposed matrix (which is actually the same matrix) and dividing
each entry by the width n (8 in the case of the example in Fig. 1).

2. Our contribution

Hadamard transforms are known and well researched trans-
forms. In this work, we show how this transform can be used to
convert data from classic representation to a holographic repre-
sentation. Moreover, we provide a novel method for a single step
error correction using a Hadamard transform. While Hadamard
transforms are commonly used for error correction, our method
combines the error correction with the holographic features of the
transform to create a transform that corrects errors up to a cer-
tain threshold and provide graceful degradation of the data when
this threshold is crossed. We also provide a method for creating
Hadamard matrices without limitations on the length of the ma-
trix, i.e., the only limitation on the length is that it must be less
than the width. Except for this limitation, the length of the matrix
can be any integer value. The main goal of our use of Hadamard
transform is the graceful degradation in the presence of errors that
characterizes holographic memory. We also provide a neural net-
work computation of the transform as a proof of concept for feasi-
bility.

3. Holographic memory using the Walsh-Hadamard transform

One can have a memory model with holographic features
simply by saving the output vector (the result of the multiplication
of the input vector by the Walsh-Hadamard matrix) instead of
saving the input vector itself. For example, instead of saving
a 2D image, one can save the transformed image obtained by
concatenating the rows of the image array to a 1D vector, multiply
the vector by the Walsh-Hadamard matrix, and save the result.

As mentioned above, the Walsh-Hadamard transform may be
viewed as a holographic transform, as each coefficient contains
information regarding the entire input vector. We show next how
a corruption of parts of the transformed data results in a graceful
degradation.
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Fig. 1. Walsh-Hadamard transform on a {—1, 1}® vector.
3.1. Graceful degradation in case of memory corruption

If a coefficient is corrupted in the saved transformed vector, the
resulting vector after the reconstruction of the input vector from
all the coefficients will contain minor errors (small changes in the
values) in all the entries, rather than major errors (large changes
in the values) in some of the entries. This is due to the fact that
the reconstruction is done by multiplying the saved vector by the
same matrix and dividing by the number of rows of that matrix,
meaning that each entry in the reconstructed vector is the result
of adding and subtracting certain entries of the saved vector. If, for
example, an entry is changed from x to X, then all the entries in
the reconstructed vector will differ from their counterparts in the
original vector exactly by (x' — x)/n, where n is the length of both
vectors (as well as the number of rows and columns of the matrix).

The reconstructed vector may be regarded as a gracefully
degraded version of the original vector. It does not contain one
meaningful error; instead, the error is distributed over the whole
vector. This can be best understood by thinking of an image. If the
original vector is a vector of integers, or elements of some other
discrete domain, the entries of the reconstructed vector should be
rounded to the “nearest” legal value. In this case, we also get an
error correction feature due to the rounding. For example, if after
a corruption of the saved vector it is multiplied by the matrix, and
each entry is then divided by n, then a value of an entry may change
from 9 to 8.8. In this case it is rounded to 9 and the error has been
corrected.

This example of a meaningful error being split into many small
errors works for an input vector with integer or real values. For a
binary input vector, there is no distinction between a minor and a
major error because the only possible error is a bit flip. In this case
we understand blurriness to mean that the error probabilities for
all entries of the reconstructed vector are the same.

3.2. Randomization for better coping with memory erasure

The fact that the Walsh-Hadamard transform is holographic
works for both errors and erasures. Since the work is inspired by
the holographic brain theory and its implications on brain damage,
and it is natural to assume that lesions are more similar to erasures
than to errors, we focus in the sequel on coefficient erasures.

In case of a coefficient erasure, i.e., the situation where the
coefficient is unknown, we treat the coefficient as if it vanishes.
The characteristics of the Walsh-Hadamard matrix may, in some
cases, cause a “poor distribution” issue. Namely, an input vector in
{—1, 1}" that has a high correlation (in absolute value) with several
columns of the Walsh-Hadamard matrix will yield a coefficient
vector with a few relatively large coefficients and a lot of zeros
or values close to zero. Due to the orthogonality of the columns
in the Walsh-Hadamard matrix, the higher the correlation with
one column is, the closer to zero the product with the other
columns tends to be. In this case, an erasure of one of the few
large coefficients will result in a major change in the reconstructed
vector. In order to avoid such a scenario, we randomize a binary
input vector by xoring it with a random input vector, and thus
decrease the probability of a high correlation. In case of an input
vector in {—1, 1}", the randomization can be done by multiplying
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