
Improving program comprehension by combining code understanding
with comment understanding

Bradley L. Vinz *, Letha H. Etzkorn
The University of Alabama in Huntsville, Huntsville, AL 35899, USA

a r t i c l e i n f o

Article history:
Received 31 October 2007
Accepted 28 March 2008
Available online 4 April 2008

Keywords:
Program comprehension
Code understanding
Comment understanding
Knowledge-based system
Heuristic approaches

a b s t r a c t

Existing source code-based program comprehension approaches analyze either the code itself or the
comments/identifiers but not both. In this research, we combine code understanding with comment
and identifier understanding. This synergistic approach allows much deeper understanding of source
code than is possible using either code or comments/identifiers alone. Our approach also allows compar-
ing comments to their associated code to see whether they match or belong to the code. Our combined
approach implements both our heuristic code understanding and the comment/identifier understanding
within the same knowledge base inferencing engine. This inferencing engine is the same used by an ear-
lier well tested, mature comment/identifier-based program understanding approach.

Published by Elsevier B.V.

1. Introduction

Program comprehension refers to any activity that uses dy-
namic or static methods in order to extract properties of a program
so as to achieve a better understanding of the software [4,5]. Devel-
opment of automated program understanding tools is a prolific,
on-going research area [12,16,18,21,26]. Such tools are important
for several reasons: first, software maintenance personnel are often
not the original developers of the software. Next, personnel turn-
over can result in programmers having to take over unfamiliar soft-
ware, sometimes in the middle of project development.
Furthermore, code inspections and code reviews also require indi-
viduals to deal with unfamiliar software. In these cases, automated
methodologies can make program comprehension easier and more
complete, and thus can substantially reduce the amount of time re-
quired to understand the code.

Automated program understanding tools are particularly
important when using object-oriented (OO) software [5], where
the learning curve required to use an OO framework can be exten-
sive. OO software is characterized by code scattering: class imple-
mentations are commonly constructed in files separate from their
respective class definitions. Similarly, classes often inherit from
parent classes located in distinct files. Code scattering combined
with other advanced OO language features, such as function over-
loading and runtime polymorphism (virtual functions), can con-

tribute to the difficulty in understanding complex software
frameworks.

Early work on program comprehension focused primarily on
analyzing the code itself. Research often included comparing data
flow and/or control flow graphs derived from analysis of a source
program to an a priori library of known constructs [12,13,20].
However, much research in this golden age of code understanding
(mid-1980s to mid-1990s) focused on formal non-heuristic pro-
gram comprehension which was shown by Woods and Yang [27]
to be NP-hard. For this reasons, heuristic approaches acquired
new importance [27]. One such heuristic approach was that of
Harandi and Ning [9]. In their heuristic concept recognition ap-
proach, lower level events such as statement, condition, loop,
search, sort, etc., were combined within a knowledge base to form
higher level events.

More recently (1996 to present), a substantial amount of re-
search in program comprehension has focused on applying infor-
mation retrieval techniques to descriptive identifier names
(function names and variable names) and comments in computer
software [4,5,7,15,18]. Methods that exploit such information are
sometimes referred to as informal tokens-based approaches [6,8].
The information encoded in comments and identifiers potentially
offer valuable clues in obtaining higher degrees of program com-
prehension, in both clarity and depth.

One major advantage of tokens-based approaches over pure
code analyzers is that they have the potential to capture pertinent
domain knowledge not encoded in the code events [3]. The reason
is that code and informal tokens are defined at different levels of
abstraction [3]. Code-based program understanding approaches

0950-7051/$ - see front matter Published by Elsevier B.V.
doi:10.1016/j.knosys.2008.03.033

* Corresponding author. Tel.: +1 703 369 6422; fax: +1 256 824 6239.
E-mail addresses: bvinz@verizon.net (B.L. Vinz), letzkorn@cs.uah.edu (L.H.

Etzkorn).

Knowledge-Based Systems 21 (2008) 813–825

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

mailto:bvinz@verizon.net
mailto:letzkorn@cs.uah.edu
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


return programming-oriented concepts such as searches, numeri-
cal integration, sorts, etc. However, human-oriented concepts such
as acquire target and reserve airplane seat are not directly related
to the code itself. This information appears in the informal tokens
such as comments and identifiers, but does not directly appear in
the code [24].

However, any approach based on comments alone has the po-
tential problem that comments may not be kept up to date as
the code is modified during a maintenance activity. The domain
knowledge encoded in the comments may no longer match the
associated code. Also, not all code is commented and very often
good identifier names are not used: in those situations, comment
and identifier understanding is clearly not useful. Similarly, any ap-
proach based on code alone is totally ignoring the domain level (as
opposed to code level) information that is present in comments [3].
In general, it should be clear that any approach that analyzes only
the code or, alternately, only the comments/identifiers is using
only half the available information, and thus is providing only a
partial view of the software.

Thus, in order to achieve a complete view of software, it is nec-
essary to examine both the code and the informal tokens [24]. As a
side benefit, with a combined approach, it is also possible to map
the code to the informal tokens, and determine to a certain degree
whether the comments match the code. This valuable capability
has application to software maintenance and documentation qual-
ity assurance. For example, the software analyst should be suspi-
cious of the quality of the internal software documentation if the
comments, in general, failed to match the associated program code.
This situation could arise if the source file contained very few com-
ments relative to the amount of code, or if the comments were not
kept up to date when the code was modified. Conversely, if the
comments matched the code everywhere, the software analyst
should be suspicious that the abstraction levels of the comments
are far too low. For example, the following comment is very unin-
formative and provides minimal value to the understanding
process:

(Example 1) i++; //increment i

In contrast, the following comment is at a higher abstraction level,
which could result in a better understanding of the associated
code:

(Example 2) i++; //examine the next customer

In Example 1, comment-to-code matching might work well, but
the comment is useless. In Example 2, the comment-to-code
matching might not be very useful, but both the code and the com-
ment provide useful information to a combined approach.

Our combined code and comment understanding approach
merges the different levels of abstraction to form a complete view
of program knowledge. The merged effect is an increased level of
understanding of the program under analysis.

In our research, we have extended Etzkorn’s PATRicia (Program
Analysis Tool for Reuse) system [4,5], a mature natural language
knowledge-based (KB) program understanding engine which ana-
lyzes the semantic aspects of source code contained in comments
and identifiers, to handle not only comments and identifiers but
also heuristic analysis of the code itself. In this paper, we describe
how we use the same knowledge-base inferencing engine that was
employed in the original PATRicia system to perform code under-
standing as well as comment understanding. We expanded this
to perform comment-to-code matching using the knowledge base
of our combined approach. Specifically, our research focuses on the
following goals:

1. A heuristic approach to code understanding that improves on
some earlier heuristic code understanding approaches (while
still avoiding the NP-hard characteristics of earlier formal code
understanding approaches).

2. A combined code and informal token (comment and identifier)
approach that will provide a more complete view of the soft-
ware than has been possible heretofore.

3. An automated analyzer to determine whether the given com-
ments actually match the associated code, and to determine
the degree to which they match.

Section 2 provides background information on program under-
standing approaches with specific attention to code-based and
informal tokens-based approaches (primarily information retrieval
approaches). Section 2.1 describes our research approach that
combines these approaches. The use of the combined approach is
illustrated on open source computer software for our proof of
concept, described in Section 4. Section 5 introduces a simple
code-to-comment match metric that can be used on source code
to determine how well comments match the code. Section 6
provides some conclusions drawn from our research. Section 7
suggests future research directions.

2. Program comprehension approaches

Program understanding consists of all activities by which
knowledge is gained about a program. It is the task of building
mental models of the program for various abstraction levels, rang-
ing from the models of the code itself to models that represent the
application domain.

As noted above, program comprehension approaches include
code understanding approaches and comment/identifier under-
standing approaches. A common systematic approach to code
understanding is to take a program and construct a high-level rep-
resentation of it by analyzing the program code’s structure [21].
The golden age of code understanding approaches date from the
1980s and 1990s. Comment understanding approaches [3,6], ac-
count for higher levels of abstraction derived from program com-
ments and identifier names. Starting in the late 1990s, comment
and identifier understanding came to be treated as an information
retrieval task [5,6,16].

In the Section 2.1, we discuss some formal approaches to code
understanding and why several of these approaches are NP-hard.
In Sections 2.2 and 2.3, we discuss some comment and identifier
approaches, particularly the more recent information retrieval
approaches.

2.1. Code understanding approaches

Code understanding approaches include Rich and Wills [20],
Kozaczynski and Ning [13], Woods and Yang [27], and Harandi
and Ning [10]. Tjortjis et al. [23] analyzed existing program under-
standing systems, and divided the types of program understanding
systems into formal, rigorous, semi-formal, systematic, and ad hoc.
Tjortjis characterized the work of Rich and Wills, Harandi and Ning,
and Kozaczynski and Ning as ‘‘rigorous.”

2.1.1. Woods and Yang code understanding approach
Woods and Yang [27] analyzed the complexity of various pro-

gram understanding systems. They defined the ‘‘simple program
understanding problem (SPUP),” which consisted of dividing the
source code into a series of blocks, each represented as a graph,
and comparing each block to a library of program plan templates
represented as graphs. They then proved that simple program
understanding problem is NP-hard by using a reduction from the

814 B.L. Vinz, L.H. Etzkorn / Knowledge-Based Systems 21 (2008) 813–825



Download	English	Version:

https://daneshyari.com/en/article/404062

Download	Persian	Version:

https://daneshyari.com/article/404062

Daneshyari.com

https://daneshyari.com/en/article/404062
https://daneshyari.com/article/404062
https://daneshyari.com/

