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a b s t r a c t

We present a recurrent neural-network (RNN) controller designed to solve the tracking problem for
control systems. We demonstrate that a major difficulty in training any RNN is the problem of exploding
gradients, andwe propose a solution to this in the case of tracking problems, by introducing a stabilization
matrix and by using carefully constrained context units. This solution allows us to achieve consistently
lower training errors, and hence allows us to more easily introduce adaptive capabilities. The resulting
RNN is one that has been trained off-line to be rapidly adaptive to changing plant conditions and changing
tracking targets.

The case study we use is a renewable-energy generator application; that of producing an efficient
controller for a three-phase grid-connected converter. The controller we produce can cope with the
random variation of system parameters and fluctuating grid voltages. It produces tracking control with
almost instantaneous response to changing reference states, and virtually zero oscillation. This compares
very favorably to the classical proportional integrator (PI) controllers, which we show produce a much
slower response and settling time. In addition, the RNN we propose exhibits better learning stability and
convergence properties, and can exhibit faster adaptation, than has been achieved with adaptive critic
designs.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we propose a recurrent neural-network controller
to solve the tracking problem. We consider a real-world test
problem from electrical power and energy applications, and this
forms the motivation for development of the neural-controller
presented in this paper. The energy application we consider is that
of a three-phase grid-connected dc/ac voltage-source converter, or
grid-connected converter (GCC) for short.

A GCC is usually employed to interface between the dc and ac
sides of an electric power system. Typical converter configurations
containing a GCC include: (1) a dc/dc/ac converter for solar, bat-
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tery and fuel cell applications (Figueres, Garcerá, Sandia, Gonzalez-
Espin, & Rubio, 2009; Wang & Nehrir, 2007), (2) a dc/ac converter
for STATCOM applications (Carrasco et al., 2006; Luo et al., 2009),
and (3) an ac/dc/ac converter for wind power and HVDC applica-
tions (Carrasco et al., 2006; Mullane, Lightbody, & Yacamini, 2005;
Pena, Clare, & Asher, 1996; Rabelo, Hofmann, da Silva, de Oliveira,
& Silva, 2009; Xu &Wang, 2007).

In all these applications, controlling the GCC efficiently and
making it maintain a desired state (a tracking problem) is crucial
for the reliability and stability of both the ac and the dc subsystems.
The controller must be able to track any reference command
variations quickly. For example, these might occur in wind power
and photovoltaic applications as a result of sudden variations in the
wind speed or solar irradiation levels.

Classically the tracking problem has been addressed using pro-
portional integrator (PI) controllers (Pena et al., 1996; Qiao, Ve-
nayagamoorthy, & Harley, 2009). Limitations of these methods are
that they can have slow response times to changing reference com-
mands, can take considerable time to settle down from oscillat-
ing around the target reference state (Dannehl, Wessels, & Fuchs,
2009), and have difficulty recovering from short-circuit faults in ei-
ther the generator or the power-grid. Hence neural-network based
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solutions have been proposed to overcome these difficulties, in this
control problem and related ones (Li, Fairbank, Wunsch, & Alonso,
2012; Park, Harley, & Venayagamoorthy, 2004; Qiao, Harley, & Ve-
nayagamoorthy, 2008, 2009; Qiao, Venayagamoorthy, & Harley,
2008; Venayagamoorthy, Harley, & Wunsch, 2002, 2003).

These neural-network approaches have mainly been based on
Adaptive Critic Designs (ACDs) (Prokhorov &Wunsch, 1997;Wang,
Zhang, & Liu, 2009;Werbos, 1992). ACDs use two neural networks:
an action network and a critic network. The critic network provides
feedback to the action network, allowing the action network to be
trained on-line and in real-time, and therefore to be continually
learning and adaptive during plant operation. However useful
this double network design may be, proving convergence of the
two continually learning networks at once is challenging. In fact,
just proving the convergence of the critic network on its own is
not trivial, since critic learning algorithms generally are not true
gradient descent (Barnard, 1993). The general instability in this
case is proven by Werbos (1998), and divergence examples of
concurrent actor–critic learning exist (Fairbank & Alonso, 2012).
In practice, the best course of action is not to allow such a
system to be continually autonomously learning while controlling
a delicate or critical industrial system. Qiao, Harley et al. (2009),
Qiao, Venayagamoorthy et al. (2008) and Venayagamoorthy et al.
(2003) overcome this problem by first training the action and
critic networks concurrently off-line, and then freezing the action
neural network and dispensing with the critic network for on-
line operation of the plant. This solution of course neutralizes the
adaptive benefits of the ACD architecture. Adaptive behavior is
often recreated by using lagged state inputs for the action network
(e.g. Venayagamoorthy et al., 2003), effectively creating a time-
delay neural network. Modest improvements over PI controllers
are made using ACDs, for example, see Qiao, Harley et al. (2009)
and Qiao, Venayagamoorthy et al. (2008).

To improve on this situation further, we are using an architec-
ture that uses an action network only, but which is trained off-
line throughbackpropagation through time (BPTT) (Werbos, 1990).
This approach has the advantage that the learning algorithm is true
gradient descent on the cost-to-go function, and so convergence is
assured (assuming a smooth errorminimization surface, and a suf-
ficiently small learning rate). Also, since the BPTT algorithm is true
gradient descent, learning is guaranteed to find a true local mini-
mumof the training error. In contrast, the ACD learning algorithms
used by the aforementioned references are not true gradient de-
scent, and hence the learning progress appears stochastic, and the
minimum obtained is often not as low as that obtained by BPTT.

Recent studies showhow a single action network can be trained
with BPTT to control a GCC under fixed plant behavior (Li et al.,
2012). However, for real-life applications, the plant behavior can
change; system parameters can exhibit random variations; volt-
ages coming into the system from the power grid can fluctuate;
short circuits can occur. Hence the action network needs to become
more adaptive than demonstrated by Li et al. (2012).

Adaptive behavior can be enabled by modifying the action net-
work to have neural-context units which respond to the chang-
ing behavior of the plant, thus making the action network into a
RNN. This design for adaptation is potentially much faster than the
adaptation carried out by ACDs, in that the weights of the RNN do
not need to change to accommodate adaptation. This is referred
to as fixed-weight adaptive behavior by Prokhorov, Feldkamp, and
Tyukin (2002), and can produce almost instantaneous adaptation.
In contrast, ACD adaptive behavior takes place by retraining the
two neural networks involved, and this kind of learning is slow.

A major difficulty with using a RNN for the controller is
that because data cycles around the RNN many times, learning
gradients may decay rapidly to zero, or alternatively, the learning
gradients may rapidly become excessively large, and both of these

Fig. 1. Grid-connected converter schematic.

problems cause difficulties for learning by gradient descent. These
problems are known as ‘‘vanishing’’ or ‘‘exploding’’ gradients,
respectively, in the RNN literature (Hochreiter & Schmidhuber,
1997). While Hochreiter and Schmidhuber (1997) address the
problem of vanishing gradients, our paper attempts to minimize
the problem of exploding gradients for the tracking problem
domain, through the introduction of a ‘‘stabilization matrix’’, and
carefully constrained context units.

The novelties of this paper include: (1) the stabilizing matrix,
which is a hand-picked neural weight matrix which represents
some pre-learned basic control behavior, allowing the learning
algorithm to concentrate on learning the more advanced nuances
of behavior and thus to acquire improved solutions than otherwise
possible; (2) a theoretical discussion on the importance of handling
the problem of exploding gradients in RNNs; and (3) a design for
using the predicted as well as the previous inputs that allows the
neural network to behave adaptively on-line, despite the training
process having taken place entirely off-line.

The rest of the paper is structured as follows: the basic topology
of the GCC neural-network vector controller, and how to train it to
solve the tracking problem using BPTT, is presented in Section 2.
Section 3 shows the stabilizationmatrix approach,which enhances
the neural-network training speed and stability when the system
matrix and the control voltage matrix are fixed. Section 4 presents
how a RNN is trained to behave adaptively on-line when these
matrices vary, which relies upon novel extra context inputs to the
neural controller. Simulation experiments are given in Section 5.
These include GCC experiments for the neural vector controller,
under variable and dynamic conditions, and a comparison to two
conventional control methods, showing the advantages of our
method. Also an experiment is included that demonstrates how
the stabilization-matrix method can be extended to the case of
non-invertible matrices. The paper concludes in Section 6 with a
summary and a discussion of further work, and Appendix which
proves that the method for adaptation which we used is flexible
enough to work in a greater variety of applications than just our
chosen experiments.

2. Neural-network vector-control architecture

Fig. 1 shows schematics of the GCC, in which a dc-link capacitor
appears on the left, and a three-phase voltage source, representing
the voltage at the Point of Common Coupling (PCC) of the ac
system, appears on the right. In this diagram the capacitor would
be connected to the electrical generator (for example the wind
turbine, or photovoltaic array) and has a dc voltage represented
by Vdc, and the three voltages va, vb and vc would represent the
three-phase voltage of the electric power grid.

The power transferred between the grid and the converter
includes active power and reactive power. The purpose of the GCC
controller is to control the active and reactive power transferred.

The circuit contains 3-phase ac-voltages va, vb, and vc , with
corresponding 3-phase ac-currents ia, ib and ic . By transforming to
a rotating frame of reference with axes d and q, as described by Li,
Haskew, Hong, and Xu (2011), it is possible to largely eliminate the
ac-sinusoidal variations, and to transform these three dimensions
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