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a b s t r a c t

Most dimensionality reduction techniques are based on one metric or one kernel, hence it is necessary
to select an appropriate kernel for kernel-based dimensionality reduction. Multiple kernel learning for
dimensionality reduction (MKL-DR) has been recently proposed to learn a kernel from a set of base
kernels which are seen as different descriptions of data. As MKL-DR does not involve regularization, it
might be ill-posed under some conditions and consequently its applications are hindered. This paper
proposes a multiple kernel learning framework for dimensionality reduction based on regularized trace
ratio, termed as MKL-TR. Our method aims at learning a transformation into a space of lower dimension
and a corresponding kernel from the given base kernels among which some may not be suitable for the
given data. The solutions for the proposed framework can be found based on trace ratio maximization.
The experimental results demonstrate its effectiveness in benchmark datasets, which include text, image
and sound datasets, for supervised, unsupervised as well as semi-supervised settings.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Because of the curse of dimensionality and the requirement of
computational efficiency, a lot of dimensionality reduction meth-
ods have been developed for particularly high-dimensional data
applications. These methods can be classified into two categories,
i.e., unsupervised and supervised methods, depending on whether
the label information is available or not. Principal component
analysis (PCA) (Jolliffe, 1986) is a well-known unsupervised di-
mensionality reduction technique. It aims at identifying a linear
transformation such that the variance of transformed data is maxi-
mized. Recently, manifold assumptionwas introduced into dimen-
sionality reduction. To preserve the manifold structure, nonlinear
dimensionality reduction methods such as ISOMAP (Tenenbaum,
de Silva, & Langford, 2000), locally linear embedding (LLE) (Roweis
& Saul, 2000) and Laplacian Eigenmap (LE) (Belkin & Niyogi, 2001)
were proposed. Moreover, a linear approximation of LE called lo-
cality preserving projections (LPP) was proposed in He and Niyogi
(2004). Unsupervised dimensionality reduction does not involve
any label information. However, if there exists label information,
supervised dimensionality reduction can be conducted. Linear dis-
criminant analysis (LDA) is a typical supervised dimensionality
reduction method, which tries to identify a lower dimensional
space minimizing the within-class covariance while maximizing
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the between-class covariance simultaneously. Its kernelized ver-
sion called kernel Fisher discriminant analysis (KFDA) has been
introduced inMika, Ratsch,Weston, Scholkopf, andMullers (1999).
Other popular supervised dimensionality reduction methods in-
clude partial least squares (PLS) (Wold, 1985) and canonical corre-
lation analysis (CCA) (Hardoon, Szedmak, & Shawe-Taylor, 2004).
PLS finds orthogonal projection directions for the input data by
maximizing its covariance with the output. The original formula-
tion of CCA is not for dimensionality reduction, however, with label
information as one of the two views, CCA becomes a supervised
dimensionality reduction method that could extract an effective
representation of the object by correlating the linear relationships
between the two views of the object.

Many dimensionality reduction techniques could be unified un-
der a common framework. For example, ISOMAP, LLE and LE could
be unified by kernel PCA (Ham, Lee, Mika, & Schölkopf, 2004) with
specially constructed Gram matrices. Recently, a new framework
called graph embedding (Yan et al., 2007) was proposed and it cov-
ers many dimensionality reduction technologies, like ISOMAP, LLE,
LE, LPP, PCA and LDA. Graph embedding was extended to multiple
kernels setting in Lin, Liu, and Fuh (2011) called multiple kernel
learning for dimensionality reduction (MKL-DR). The goal of MKL-
DR is to learn a transformation matrix from multiple descriptions
of data represented by different base kernels. MKL-DR provides the
ability of learning a unified space of lower dimension for data in
multiple feature representations. It finds the solutionswith two re-
laxation steps and its effectiveness has been demonstrated in im-
age clustering and face recognition tasks. The advantage of using
multiple kernels instead of only one kernel in the learning tasks of
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classification and dimensionality reduction has also been demon-
strated in Choi, Choi, Katake, Kang, andChoe (2010) and anonlinear
way to combine the kernels has been proposed.

In this paper, we propose a regularizedmultiple kernel learning
framework for dimensionality reduction. Based on this framework,
a method to learn a kernel and a linear transformation matrix is
introduced and algorithms to find approximate solutions by trace
ratio maximization (Ngo, Bellalij, & Saad, 2012) are derived. By
focusing on techniques pertaining to dimensionality reduction,
the proposed formulation introduces a new class of applications
with the multiple kernel learning framework to address not only
supervised learning problems but also unsupervised and semi-
supervised ones.

The rest of the paper is structured as follows. A review of related
works is presented in Section 2. In Section 3, a unified framework
is introduced and based upon which our new dimensionality
reduction method (MKL-TR) is proposed. The experimental results
in supervised, unsupervised and semi-supervised datasets are
reported in Section 4. Concluding remarks and a discussion of
future works are given in Section 5.

Notation: In the rest of this paper, we denote the sample set as
matrix X = [x1, x2, . . . , xn], where xi ∈ Rm is an m-dimensional
vector. For supervised dimension reduction task, the class label of
the sample xi is assumed to be yi ∈ {1, . . . , c} and c denotes the
number of classes. The M base kernels are denoted as Ki and the
corresponding nonnegative coefficients are α = [α1, . . . , αM ]

T .
For a given dimensionality reduction task, we seek to find a kernel
Kα =

M
i αiKi and a transformation matrix P such that the result-

ing data zi = PTΦ(xi) have a lower dimensionality d. For the kernel
feature space induced, P could be expressed as P = Φ(X)A, where
Φ(X) is the datamatrix in the feature space and A ∈ Rn×d is the co-
efficient matrix for P , the reduced data matrix could be expressed
as Z = PTΦ(X) = (Φ(X)A)TΦ(X) = ATΦ(X)TΦ(X) = ATK .

2. Related works

2.1. Multiple kernel learning for discriminant analysis

In Lanckriet, Cristianini, Bartlett, Ghaoui, and Jordan (2004),
Lanckriet et al. pioneered the work of multiple kernel learning
which integrates the tuning of kernels into the learning process.
The idea has been applied to discriminant analysis with kernel
Fisher discriminant analysis (KFDA) and regularized kernel dis-
criminant analysis (RKDA) being used in optimal kernel selection
(OKS) (Kim,Magnani, & Boyd, 2006) and discriminant kernel learn-
ing (DKL) (Ye, Ji, & Chen, 2008) respectively. Both of them are
supervised techniques, with OKS for binary-class data and DKL
extending it to multiple-class settings. They aim at learning an
optimal kernel based on regularized kernel Fisher discriminant
analysis (KFDA) for which the following objective function is com-
monly used:

max
A

tr((AT (KHK + λK)A)−1ATKSbKA), (1)

where K is a kernel matrix, H = I −
1
n11

T is the centering matrix,
λ > 0 is the regularization parameter, and Sb is defined as

Sb(i, j) =


n/nyi − 1 if yi = yj
−1 if yi ≠ yj,

(2)

in which nyi is the total number of samples in the class of data
i. With the optimal A found, the optimal value of problem (1)
becomes

tr((KHK + λK)−1KSbK). (3)

DKL aims to find a combination of base kernels such that the above
value is maximized.

2.2. Multiple kernel learning for dimensionality reduction

To learn the transformationmatrix frommultiple sources,MKL-
DR (Lin et al., 2011) extended graph embedding to multiple kernel
learning setting.

2.2.1. Graph embedding
In Yan et al. (2007), graph embedding is proposed to provide

a unified framework for dimensionality reduction. Graph embed-
ding defines two graphs G and G′, and W and W ′ are the cor-
responding affinity matrices. The projection vector v could be
obtained by solving

min
v

vTXLXTv

s.t. vTXL′XTv = 1, or

vTXDXTv = 1, (4)

where L = diag(W1) − W and L′
= diag(W ′1) − W ′ are graph

Laplacian of G and G′ respectively. To find d such vectors, the fol-
lowing generalized eigenvalue problem has to be solved

min
v

tr(V TXLXTV )

s.t. V TXL′XTV = I. (5)

The PCA (Jolliffe, 1986), ISOMAP (Tenenbaum et al., 2000), LLE
(Roweis & Saul, 2000), LPP (He & Niyogi, 2004), LDA, local discrim-
inant embedding (LDE) (Chen, Chang, & Liu, 2005), and marginal
Fisher analysis (MFA) (Yan et al., 2007) can be expressed by graph
embedding.

2.2.2. MKL-DR
Multiple kernel learning for dimensionality reduction (MKL-

DR) made an attempt to combine multiple kernel learning with
dimensionality reduction. It aims to find a linear combination of
base kernels Kα =

M
i αiKi, where αi ≥ 0, and a transformation

matrix such that the following objective function is optimized

min
A,α

n
i,j=1

∥ATK(i)α − ATK(j)α∥
2Wij

s.t.
n

i,j=1

∥ATK(i)α − ATK(j)α∥
2W ′

ij = 1,

αi ≥ 0, i = 1, 2, . . . ,M, (6)

where

K(i)
=

K1(1, i) · · · KM(1, i)
...

. . .
...

K1(n, i) · · · KM(n, i)

 ∈ Rn×M . (7)

It can be easily shown that such a formulation of MKL-DR is
equivalent to

min
A,α

tr(ATKαL1KαA)

s.t. tr(ATKαL2KαA) = 1,
αi ≥ 0, i = 1, 2, . . . ,M, (8)

where L1 = diag(W1) − W and L2 = diag(W ′1) − W ′. In Lin
et al. (2011), it is solved by updating A and α alternately. Given α,
problem (8) is relaxed into a generalized eigenvalue problem:

min
A

tr(ATKαL1KαA)

s.t. ATKαL2KαA = I (9)
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