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a b s t r a c t

Neural network architectures that implement support vector machines (SVM) are investigated for the
purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms
including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules
adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal
for storing and retrieving support vectors. Several different CQM-based neural architectures are exam-
ined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing
for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full
ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architec-
tures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry
is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception
has evolved as an internalized motor programme.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many living organisms learn new behaviors from one single ex-
posure to significant sensor inputs. For example, snails learn food
aversion froma single experience (Teyke, 1995). This formof learn-
ing is called one-shot learning or one-trial learning (Guthrie, 1935)
and is common in nature but is hard to explain in neural net-
work models since Hebbian learning requires many repetitions of
appropriate stimuli before a new pattern is added to an existing
repertoire of recognizable patterns. A mechanism where the brain
remembers noteworthy sensory inputs and runs a background
loop of simulated experiences would help to provide the repeti-
tive training that is required for Hebbian learning. Such regurgi-
tation could perhaps be performed in sleep when normal sensor
inputs are disabled. A driving motivation for the present work is to
find viable neural architectures for modeling biological one-shot
learning according to this concept.

Support vector machines (SVMs) are pattern recognition algo-
rithms with a firm foundation in optimization and generalization
theory and a good track record of practical applications. SVMs are
easy to use for non-experts and the performance of a standard SVM
often rival that of expertly hand-crafted ANN. An interesting prop-
erty of SVMs is that the learning state consists of a special set of
training examples called support vectors. Significant new training
examplesmay join the set of support vectors. Therefore, it appears
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that neural implementations of SVMs could be interesting as mod-
els of one-shot perceptual learning in nature.

The reasons for considering neural network implementations of
SVMs are (1) finding efficient hardware implementations of SVMs,
in particular as analogue circuits, and (2) using SVMs as models of
biological neural functions. This paper follows the latter approach
but we will here briefly review the literature of both branches. The
SVM classification function is a weighted sum of kernel function
values in which the input vector is one of the arguments to the
kernel function. Neural networks can implement any continuous
multivariate functionwith arbitrary accuracy (Cybenko, 1989) so it
is not surprising that the SVM classification function readily is ex-
pressed as neural networks (Schölkopf & Smola, 2002). As pointed
out by Yang, He, and Hu (2012), SVM training is a quadratic pro-
grammingproblemand recurrent neural networks are able to solve
such problems. Hence it is feasible to implement both SVM classi-
fication and supervised iterative SVM training as artificial neural
networks.

Anguita, Ridella, and Rovetta (1998) showed that SVMs can be
realized as recurrent electronic circuits. Anguita and Boni (2003)
reviewed VLSI implementations of SVMs. A two-layer artificial
neural network that implements a 1-norm SVM was defined by
Tan, Xia, and Wang (2000) and simplified with respect to the
bias calculation by Anguita and Boni (2002). Xia and Wang (2004)
demonstrated a one-layer recurrent ANN implementing a 1-norm
SVM for which Perfetti and Ricci (2006) as well as Liu and Liu
(2009) and Yang et al. (2012) proposed improvements intended to
further optimize electronic circuit implementations. For compari-
son to the present work, it should be noted that these hardware-
oriented implementations are in the context of supervised learning
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in which an iterative update rule acts on a series of externally pro-
vided training examples and is hence not intended for modeling
biological one-shot learning.

Support vector machines are used extensively for automating
classification in computational biology (for a review see e.g. Noble
(2004)). The literature on support vector machines as models of
biological phenomena is, however, scant. Galán, Sachse, Galizia,
andHerz (2003, 2004) analyzed the olfactory code of the honey bee
and noted that the interaction between the antenna lobe and the
mushroom body can be regarded as a biological realization of the
classification function of a support vector machine. Odours trigger
neural attractors in the antenna lobe and the pattern of activated
attractors is classified by themushroombody according to an SVM-
like process. Viéville and Crahay (2004) introduced a biologically
plausible SVM-like neural network classifier aiming at explaining
the fast (100–150 ms) classification process in the visual cortex.
The key idea is to classify based on distance to a set of known class
prototypes. The prototypes are similar to support vectors and the
Hebbian learning mechanism is guided by Vapnik learning theory
(Vapnik, 1998). The present paper differs from Viéville and Crahay
(2004) in that it explores neural network architectures for standard
SVMs and that it focuses on explaining biological one-shot learning
rather than the speed of visual perception.

Previous work by the author of this paper shows that a
particular SVM algorithm (zero-bias ν-SVM) can be expressed as
a biologically plausible ANN that is capable of one-shot learning
(Jändel, 2010a). The architecture and dynamics of this model have
been compared to the olfactory system (Jändel, 2010a) and also to
the burst dynamics of the thalamocortical system (Jändel, 2009).
Jändel (2011) point to an evolutionary path along which a neural
SVM could emerge from ubiquitous neural components.

Section 2 of the present paper defines an ensemble of SVM
algorithms. Section 3 introduces the major neural building blocks,
derives training rules and finally analyzes several different neural
architectures for each SVM algorithm. Discussion and conclusions
are found in Section 4.

2. Support vector machine algorithms

We consider SVMs for binary classification that execute in two
different modes: classification and learning. In the classification
mode, they receive a test vector x and output the predicted va-
lence y ∈ {1, −1} of the test vector (bold letters signify vectors).
In the learning mode, they use a set of training examples for opti-
mizing internal parameters called weights. Each training example
{x, y} consists of a training vector and the associated known va-
lence. All input vectors are considered to be real-valued vectors of
equal length. The goal of training is to achieve optimal robust clas-
sification performance (see Cristianini and Shawe-Taylor (2000)
for details about SVMs).

For future reference, we describe eight well known types of
SVMs where each definition consists of the following four parts.
(I) The classification function,

f (x) =

m
i=1

yiαiK(x, xi) + b, (1)

where K is the positive definite kernel function, αi are weights and
b is a real-valued bias factor. The input vector is classified to be of
positive valence if f (x) ≥ 0 and to be of negative valence other-
wise.
(II) The (dual) objective function W (α) where α is the weight
vector.
(III) A set of constraints. The positivity condition,

∀i : αi ≥ 0 (2)

is satisfied for all SVMs. Biased (b > 0) SVMs always include the
constraint,

m
i=1

yiαi = 0. (3)

The constraints (2) and (3) are understood to hold even if they are
not repeated in the following SVM definitions.
(VI) An algorithm for computing the value of the bias factor b.
The optimal set of weights is found by maximizing W (α) with
respect to α under the relevant set of constraints. After computing
the bias factor the classification function is used for predicting the
valence of test vectors.

Support vectors are training examples with weights αi > 0. The
remaining trivial examples with αi = 0 do not contribute to the
classification function. Support vectors are either regular support
vectors or outliers where the former are support vectors that are
correctly classified with sufficient margin. The precise definition
of regular support vectors differs between the various SVM types.

For future use we define the classification margin of a training
example (xi, yi),
Mi = yif (xi). (4)
The margin is positive if the example is correctly classified and
negative otherwise. Some of the SVM algorithms specify a target
marginMT for support vectors.

We further define the unbiased classification function,

h(x) = f (x) − b =

m
i=1

yiαiK(x, xi). (5)

Introducing Kronecker delta functions,

δ+(y) =


1 if y = 1
0 if y ≠ 1 , δ−(y) =


1 if y = −1
0 if y ≠ −1, (6)

and the set of regular support vectors SV R, averages over positive
and negative valence regular support vectors are defined according
to,

h̃∗ =
1
m̃∗


i∈SVR

δ∗(yi)h(xi), (7)

where m̃∗ =


i∈SVR
δ∗(yi) and the symbol∗ refers to either+ or−.

The eighth types of SVMs to be defined come in four pairswhere
each pair includes a zero-bias (b = 0) and a biased SVM. The biased
SVMs are first described.

2.1. Maximum-margin SVM

Themaximum-margin SVM is a hard-margin SVMwhichmeans
that all support vectors are regular withMT = 1 and the remaining
trivial examples have margins MT > 1. Training will succeed only
if these conditions are satisfied after optimization of the objective
function,

W (α) =

m
i=1

αi −
1
2

m
i=1,j=1

yiyjαiαjK(xi, xj), (8)

under the standard constraints (2) and (3). The bias factor can be
computed according to,

b = −
1
2
(h̃+ + h̃−). (9)

2.2. 1-norm SVM

The 1-norm SVM is a soft-margin SVM where support vectors
may violate the target margin MT = 1. A slack variable that
measures how much the margin is surpassed is defined for each
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