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a b s t r a c t

In this paper, the problemof learning the functional dependency between input and output variables from
scattered data using fractional polynomial models (FPM) is investigated. The estimation error bounds
are obtained by calculating the pseudo-dimension of FPM, which is shown to be equal to that of sparse
polynomial models (SPM). A linear decay of the approximation error is obtained for a class of target
functions which are dense in the space of continuous functions. We derive a structural risk analogous
to the Schwartz Criterion and demonstrate theoretically that themodel minimizing this structural risk can
achieve a favorable balance between estimation and approximation errors. An empirical model selection
comparison is also performed to justify the usage of this structural risk in selecting the optimal complexity
index from the data. We show that the construction of FPM can be efficiently addressed by the variable
projection method. Furthermore, our empirical study implies that FPM could attain better generalization
performance when compared with SPM and cubic splines.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Given some scattered noisy examples (xi, yi)li=1, the main goal
of learning is to fit a function (model) to reveal the relationship be-
tween the input and output variables. Such kind of fitting should
be predictive in the sense that it can estimate the outputs well for
the previously unseen data (Poggio & Smale, 2003). The general-
ization error, which reflects the expected risk when using the ob-
tained model to imitate the process of generating the sample, is
critically important for the predictability of the constructed model
(e.g., Niyogi & Girosi, 1999; Vapnik, 2000). Consequently, analyz-
ing the generalization error occupies a central place in learning
theory.

A standard approach to addressing the generalization error is
to decompose it into two parts: the estimation error and the ap-
proximation error (Niyogi & Girosi, 1996, 1999). These two kinds
of errors come from two different factors which are responsible for
the model’s generalization ability: (1) the insufficient information
about the underlying input–output variable relationship due to the
limited number of examples, and (2) the insufficient representa-
tional capacity of the hypothesis space where the learning pro-
cess is implemented (Niyogi & Girosi, 1996, 1999). A model with
good generalization performance should attain a favorable balance
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between the estimation and approximation errors (Geman, Bi-
enenstock, & Doursat, 1992; Györfi, Kohler, Krzyżak, &Walk, 2002;
Hastie, Tibshirani, & Friedman, 2001).

For some specific learning methods, results on characterizing
their generalization ability have been obtained. Cucker and Smale
(2002) and Cucker and Zhou (2007) provided a systematic study on
generalization errors when the hypothesis space is a Reproducing
Kernel Hilbert Space (RKHS). It is well known that a Hilbert space
with bounded evaluation functionals possesses a reproducing ker-
nel (Aronszajn, 1950), thus the hypothesis space considered by
Cucker and Smale and Cucker and Zhou is rather general. Niyogi
and Girosi (1999) characterized the generalization ability of hy-
pothesis spaces consisting of linear superpositions of nonlinearly
parameterized functions, which include radial basis functions and
multilayer perceptrons as specific instances. For some classes of
artificial neural networks, Bartlett, Maiorov, and Meir (1998),
Haussler (1992) and Krzyżak and Linder (1998) presented some ef-
fective upper bounds for estimation errors based on an extension
of the Probably Approximately Correct (PAC) model, while their ap-
proximation power has been extensively studied in Barron (1993)
and Niyogi and Girosi (1999).

In this paper, we study the generalization performance of frac-
tional polynomial models (FPM) and their applications to regres-
sion problems. A function f (x) is called a fractional polynomial if it
can be expressed with the form:

f (x) =

n
i=1

cixti , ci, ti ∈ R, x ∈ R+,
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where R+ denotes the set of positive numbers. Fractional polyno-
mials generalize the traditional sparse polynomials of the form

f (x) =

n
i=1

cixdi , ci ∈ R, di ∈ N+
∪ {0}, x ∈ R,

by allowing the exponents ti to take real values. In comparisonwith
sparse polynomial models (SPM), FPM are more adaptive since the
exponents are allowed to change according to the sample, which
implies the possible superiority of FPM when applied to the prac-
tical problems. To the authors’ best knowledge, the research on
the approximation power of FPM can be dated back to Müntz, who
showed that (DeVore & Lorentz, 1993) for a nonnegative sequence
0 = t0 < t1 < t2 < · · ·, the necessary and sufficient condition
under which the linear combination of xti , i = 0, 1, . . . is dense on
C[0, 1] is that


∞

i=1 1/ti = ∞. Here C[0, 1] denotes the collection
of all continuous functions defined on [0, 1]. Royston and Altman
(1994) also considered a related polynomial modeling strategy, for
which the exponents are restricted to a small predefined set of in-
teger and non-integer values.

Since FPM include SPM as a specific subset, approximation
errors would be smaller in our case. However, to justify the
generalization ability of the constructed model, one has to take
into account the model’s complexity. Indeed, the learning pro-
cess performed in a class with too large capacity can lead to the
overfitting phenomenon, where the model fits the sample well
but has little generalization performance for the upcoming data
(e.g., Cherkassky & Ma, 2009; Hastie et al., 2001). In this paper, the
capacity of such hypothesis space is characterized in terms of its
pseudo-dimension,which is shown to be equal to that of SPM. Con-
sequently, allowing the exponents to take values over R does not
increase the model’s complexity in principle. The linear decay of
the approximation error is derived for a class of target functions
that are dense in C[a, b], a > 0. Our theoretical discussion sug-
gests a structural risk analogous to the Schwartz Criterion and we
have justified its application in selecting the optimal model, both
theoretically and empirically. We also show that the construction
of FPM can be considered as a separable nonlinear least squares
problem, which can be efficiently approached by the variable pro-
jection method (Golub & Pereyra, 1973). Some experimental re-
sults are also provided to illustrate the possible advantage of FPM
over the more established SPM and cubic splines.

This paper is organized as follows. Section 2 provides the state-
ment of the problem. Section 3 and Section 4 address estimation
and approximation errors, respectively. A structural risk is pro-
posed and analyzed from a theoretical perspective in Section 5.
Section 6 justifies the learning ability of FPM, aswell as the usage of
our structural risk in model selection, by performing some empir-
ical comparisons. Some conclusions and interesting problems for
further research are presented in Section 7.

2. Statement of the problem

Suppose the examples z = (z1, z2, . . . , zl) = ((x1, y1), (x2, y2),
. . . , (xl, yl)) are independently drawn according to an unknown
probabilitymeasureρ on Z = X×Y with a compactmetric space X
and Y = R. The goal of learning is to construct a discriminant func-
tion f : X → Y in such a way that this function should capture as
much as possible the relationship underlying the data. A standard
approach to addressing this problem is to employ the guideline of
Empirical Risk Minimization (ERM) (Vapnik, 2000), for which an ap-
propriate hypothesis space H and a loss function Q (z, f ) defined
on Z × H are chosen in advance, then the estimator f̂H is obtained
byminimizing the empirical risk Ez(f ) =:

1
l

l
i=1 Q (zi, f ) over the

space H , i.e., f̂H = argminf∈HEz(f ). To measure the quality of the
obtainedmodel, however, another quantity named the generaliza-
tion error (or risk) is introduced:

E(f ) :=


Z
Q (z, f )dρ,

which reflects the expected error suffered from using f to do
the prediction when a new example arrives. The function fρ :=

argminf E(f ) is referred to as the target function, where the infi-
mum is taken over all measurable functions.

It is helpful to decompose the generalization error into two
different parts:

E(f̂H ) − E(fρ) =

E(fH ) − E(fρ)


+


E(f̂H ) − E(fH )


,

where fH := argminf∈HE(f ) is the best model in H . Here for sim-
plicity we assume that the minimum can be attained (Cucker &
Zhou, 2007). The first term E(fH ) − E(fρ) is called the approxi-
mation error and the other term E(f̂H )−E(fH ) is referred to as the
estimation error (also called the sample error in Cucker & Smale,
2002; Cucker & Zhou, 2007; Zhang & Cao, 2012). The approxima-
tion error can be made as small as possible by enlarging the space
H , while on the other hand, if the space H is too large, then the
estimation of f̂H will be harder given a limited amount of data,
leading to a large estimation error (e.g., Geman et al., 1992; Hastie
et al., 2001). These two contradictory errors together describe the
generalization performance of the model f̂H and they can be ap-
proached in empirical process theory and approximation theory,
respectively.

As the ERM model f̂H is sensitive to the size of the class H ,
a more efficient learning strategy called the Structural Risk Mini-
mization (SRM)method has been developed to balance the approx-
imation and estimation errors (Vapnik, 1998, 2000). Rather than
considering a fixed class H , SRM considers a sequence of hypoth-
esis spaces Hn, n ≥ 1 with increasing complexity. Within each
classHn, a candidate prediction rule f̂n is picked out by some learn-
ing process and the structural risk Ez(f̂n) is established by adding
an appropriate penalty into the empirical risk to favor the simpler
models. Among the candidate models f̂1, f̂2, . . . , SRM chooses the
one with minimal structural risk as the ultimate prediction rule.
The justification of the SRM principle has attracted much atten-
tion and the readers are referred to Bartlett, Boucheron, and Lugosi
(2002), Cherkassky andMulier (2007), Vapnik (1998, 2000) and the
references therein for a comprehensive treatment.

In this paper, we always assume that the space Z takes the form
Z = X × Y = [a, b] × [−R, R], where a, R are two positive num-
bers. Here we restrict the variable x to be positive, which is natural
since

√
x is meaningless when x < 0 and x−1 takes no value at the

point x = 0. Our purpose is to illustrate the generalization per-
formance of FPM under the SRM principle. The hypothesis spaces
considered in this paper are collections of fractional polynomials
of the following form:

Hn =


f (x) =

n
i=1

cixti
x ∈ [a, b], ti ∈ [T1, T2],

n
i=1

|ci| ≤ M


, n = 1, 2, . . . , (2.1)

where T1, T2 and M are three constants defined in Theorem 9. For
simplicity of later reference, we also introduce three notations:
B0 := max(aT1 , aT2 , bT1 , bT2), B1 := max(| log a|, | log b|), B =

max(MB0, R, 1). The candidate prediction rule is constructed by
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