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a b s t r a c t

In this work we study a Hebbian neural network, where neurons are arranged according to a hierarchical
architecture such that their couplings scale with their reciprocal distance. As a full statistical mechanics
solution is not yet available, after a streamlined introduction to the state of the art via that route,
the problem is consistently approached through signal-to-noise technique and extensive numerical
simulations. Focusing on the low-storage regime, where the amount of stored patterns grows at most
logarithmical with the system size, we prove that these non-mean-field Hopfield-like networks display
a richer phase diagram than their classical counterparts. In particular, these networks are able to
perform serial processing (i.e. retrieve one pattern at a time through a complete rearrangement of the
whole ensemble of neurons) as well as parallel processing (i.e. retrieve several patterns simultaneously,
delegating the management of different patterns to diverse communities that build network). The tune
between the two regimes is given by the rate of the coupling decay and by the level of noise affecting the
system.

The price to pay for those remarkable capabilities lies in a network’s capacity smaller than the mean
field counterpart, thus yielding a new budget principle: the wider themultitasking capabilities, the lower
the network load and vice versa. This may have important implications in our understanding of biological
complexity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical mechanics constitutes a powerful technique for the
understanding of neural networks (Amit, 1992; Coolen, Kuhn, &
Sollich, 2005; Sollich, Tantari, Annibale, & Barra, 2014), however
overcoming themean-field approximation is extremely hard (even
beyond neural networks). Basically, the mean-field approximation
lies in assuming that each spin/neuron Si in a network dialogs with
all the other spin/neurons with the same strength.1 For instance,
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1 Notice that this situation corresponds to a system embedded in a fully-
connected (i.e. complete graph) topology. However, situations where we introduce
some degree of dilution (e.g. Erdös–Rényi graph), yet preserving the homogeneity
of the structure and an extensive coordination number, can be looked and treated
as mean field models.

if we consider a ferromagnetic model, once introduced N spins
Si = ±1, i ∈ (1, . . . ,N), we have the two extreme scenarios of a
nearest-neighbor model like the Ising lattice, whose Hamiltonian
can be written as

HIsing = −


⟨i,j⟩

JSiSj, (1)

where, crucially, the sum runs over all the couples ⟨i, j⟩ of adjacent
sites, and the mean-field Curie–Weiss model, whose Hamiltonian
can be written as

HCurie–Weiss = −

N,N
i<j

JSiSj, (2)

where the sum runs over all the N(N −1)/2 spin couples irrespec-
tive of any notion of distance; this is equivalent to think of spins
interacting through nearest neighbor prescriptions but as they
were embedded in an N-dimensional space. Clearly, solving the
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statistical mechanics of the latter model is much simpler with re-
spect to the former. The main route toward finite-dimensional
descriptions has been paved by physicists in the study of con-
densed matter.2 Indeed, incredible efforts have been spent from
the 1970s in working out the renormalization-group (Wilson,
1971a), namely a technique which allows inferring the properties
of three-dimensional ferromagnets starting from mean-field de-
scriptions, but a straight solution of the Ising model in dimensions
3 is still out of the current mathematical reach.3

Actually, in the last decade some steps forward toward more
realistic systems have been achieved merging statistical mechan-
ics (Ellis, 1985; Gallavotti & Miracle-Sole’, 1967; Mezard, Parisi, &
Virasoro, 1987) and graph theory (Albert & Barabasi, 2002; Bol-
lobas, 1998; Watts & Strogatz, 1998). In particular, mathemat-
ical methodologies were developed to deal with spin systems
embedded in random graphs, where the ideal, full homogeneity
among spins is lost (Agliari, Annibale, Barra, Coolen, & Tantari,
2013a, 2013b). Thus, networks of neurons arranged according to
Erdös–Rényi (Barra & Agliari, 2008), small-world (Agliari & Barra,
2011), or scale-free (Perez-Castillo et al., 2004) topologieswere ad-
dressed, yet finite-dimensional networks were still out of debate.

Focusing on neural networks, it should be noted that, beyond
the difficulty of treating non-trivial topologies for neuron archi-
tecture, one has also to cope with the complexity of their coupling
pattern, meant to encode the Hebbian learning rule. The emerg-
ing statistical mechanics is much trickier than that for ferromag-
nets; indeed neural networks can behave either as ferromagnets
or as spin-glasses, according to the parameter settings: their phase
space is split into several disconnected pure states, each coding for
a particular stored pattern, so to interpret the thermalization of
the system within a particular energy valley as the spontaneous
retrieval of the stored pattern associated to that valley. However
in the high-storage limit, where the amount of patterns scales lin-
early with the number of neurons, neural networks approach pure
spin-glasses (losing retrieval capabilities at the blackout catastro-
phe Amit, 1992) and, as a simple Central Limit argument shows
(Barra, Genovese, Guerra, & Tantari, 2012), when the amount of
patterns diverge faster that the amount of neurons they become
purely spin glasses. For the sake of exhaustiveness we also stress
that, even in the retrieval region, neural networks are exactly linear
combinations of two-party spin glasses (Barra, Contucci, Mingione,
& Tantari, 2015; Barra, Genovese, & Guerra, 2010, 2012; Barra,
Genovese, Guerra, Tantari et al., 2012; Barra, Genovese, Guerra, &
Tantari, 2014): due to the combination of such difficulties, neural
networks on a finite dimensional topology have not been exten-
sively investigated so far.

However, very recently, a non-mean-field model, where a
topological distance among spins can be defined and couplings
can be accordingly rescaled, turned out to be, to some extent,
treatable also for complex systems such as spin-glasses (Castellana
& Parisi, 2011; Monthus & Garel, 2014). More precisely, spins are
arranged according to a hierarchical architecture as shown in Fig. 1:
each pair of nearest-neighbor spins form a ‘‘dimer’’ connectedwith
the strongest coupling, then spins belonging to nearest ‘‘dimers’’
interact each other with a weaker coupling and so on recursively
(Mukamel, 2008). In particular, the Sherrington–Kirkpatrickmodel
for spin-glasses defined on the hierarchical topology has been
investigated in Castellana, Decelle, Franz, Mezard, and Parisi

2 In that context the long-range interactions are unacceptable because the
involved couplings are of electromagnetic nature, hence displaying power-law
decay with the distance.
3 It is worth mentioning that the Wilson–Kadanoff renormalization equations

(Wilson, 1971b, 1972, 1974) turn out to be exact in models with power law
interactions as those built on the hierarchical lattice that we are going to consider.

Fig. 1. Schematic representation of the hierarchical topology, that underlies the
system under study: green spots represent nodes where spins/neurons live, while
different colors and thickness for the links mimic different intensities in their
mutual interactions: the brighter and thinner the link, the smaller the related
coupling. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(2010): despite a full analytic formulation of its solution still lacks,
renormalization techniques, (Castellana & Parisi, 2011; Monthus
& Garel, 2013), rigorous bounds on its free-energies (Castellana,
Barra, & Guerra, 2014) and extensive numerics (Metz, Leuzzi,
& Parisi, 2014; Metz, Leuzzi, Parisi, & Sacksteder, 2013) can
be achieved nowadays and they give extremely sharp hints on
the behavior of systems at large size defined on these peculiar
topologies.

Remarkably, as we are going to show, when implementing the
Hebb prescription for learning on these hierarchical networks,
an impressive phase diagram, much richer than the mean-field
counterpart, emerges. More precisely, neurons turn out to be able
to orchestrate both serial processing (namely sharp and extensive
retrieval of a pattern of information), as well as parallel processing
(namely retrieval of different patterns simultaneously).

The remaining of the paper is structured as follows: in the next
subsections we provide a streamlined description of mean-field
serial and parallel processors, and we introduce the hierarchical
scenario. Then, we split in three sections our findings according
to the methods exploited for investigation: statistical mechanics,
signal-to-noise technique and extensive numerical simulations. All
these approaches consistently converge to the scenario outlined
above. Seeking for clarity and completeness, each technique is
first applied to a ferromagnetic hierarchical mode (which can be
thought of as a trivial one-pattern neural network and acts as a
test-case) and then for a low-storage hierarchical Hopfield model.

1.1. Mean-field processing: serial and parallel processors.

Probably the most famous model for neural networks is the
Hopfield model presented in his seminal paper dated 1982 (Hop-
field & Tank, 1987), counting nowadays more than twenty-
thousand citations (Scholar). This is a mean-field model, where
neurons are schematically represented as dichotomic Ising spins
(state +1 represents firing while state −1 stands for quiescence)
interacting via a (symmetric rearrangement of) the Hebbian rule
for learning as masterfully shown by the extensive statistical–
mechanical analysis that Amit, Gutfreund and Sompolinsky
performed on the model (Amit, 1992; Amit, Gutfreund, & Som-
polinsky, 1985).

More formally, once introduced N neurons/spins Si, i ∈

(1, . . . ,N), and p quenched patterns ξµ, with µ ∈ (1, . . . , p),
whose entries are drawn once for all from the uniform distribution

P(ξ
µ

i ) =
1
2
δ(ξ

µ

i − 1) +
1
2
δ(ξ

µ

i + 1), (3)

the Hopfield model is then captured by the following Hamiltonian
HHopfield(S|ξ):

HHopfield(S|ξ) = −
1
N

N
i<j


p

µ=1

ξ
µ

i ξ
µ

j


SiSj. (4)
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